Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Heredity (Edinb) ; 125(4): 212-226, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523055

RESUMEN

Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.


Asunto(s)
Meiosis , Solanum tuberosum , Cromosomas de las Plantas/genética , Diploidia , Variación Genética , Solanum tuberosum/genética , Tetraploidía
3.
Methods Mol Biol ; 2494: 255-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467213

RESUMEN

With a rapidly increasing population, diminishing resource availability, and variation in environment, there is a need to change agricultural production to deliver long-term food security. To deliver such change, we need crops that are productive and tolerant to different stress factors. The traditional methods of obtaining data for phenotyping under field conditions, e.g., for morphological traits such as canopy structure or physiological traits such as plant stress-related traits, are laborious and time-consuming. A variety of imaging tools in the visible, spectral, and thermal infrared ranges allow data collection for quantitative studies of complex traits and crop monitoring. These tools can be used on crop phenotyping and monitoring platforms for high-throughput assessment of traits in order to better understand plant stress responses and the physiological pathways underlying yield. The applications and brief review of these imaging techniques are described and discussed in this chapter.


Asunto(s)
Agricultura , Productos Agrícolas , Agricultura/métodos , Productos Agrícolas/fisiología , Imagen Óptica , Fenotipo
4.
Plants (Basel) ; 11(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631799

RESUMEN

Over the past decade, plant DNA barcoding has emerged as a scientific breakthrough and is often used to help with species identification or as a taxonomical tool. DNA barcoding is very important in medicinal plant use, not only for identification purposes but also for the authentication of medicinal products. Here, a total of 61 Indonesian medicinal plant species from 30 families and a pair of ITS2, matK, rbcL, and trnL primers were used for a DNA barcoding study consisting of molecular and sequence analyses. This study aimed to analyze how the four identified DNA barcoding regions (ITS2, matK, rbcL, and trnL) aid identification and conservation and to investigate their effectiveness for DNA barcoding for the studied species. This study resulted in 212 DNA barcoding sequences and identified new ones for the studied medicinal plant species. Though there is no ideal or perfect region for DNA barcoding of the target species, we recommend matK as the main region for Indonesian medicinal plant identification, with ITS2 and rbcL as alternative or complementary regions. These findings will be useful for forensic studies that support the conservation of medicinal plants and their national and global use.

5.
Front Plant Sci ; 13: 1003907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237505

RESUMEN

Potato is a drought-sensitive crop whose global sustainable production is threatened by alterations in water availability. Whilst ancestral Solanum tuberosum Andigenum landraces retain wild drought tolerance mechanisms, their molecular bases remain poorly understood. In this study, an aeroponic growth system was established to investigate stress responses in leaf and root of two Andigenum varieties with contrasting drought tolerance. Comparative transcriptome analysis revealed widespread differences in the response of the two varieties at early and late time points of exposure to drought stress and in the recovery after rewatering. Major differences in the response of the two varieties occurred at the early time point, suggesting the speed of response is crucial. In the leaves and roots of the tolerant variety, we observed rapid upregulation of ABA-related genes, which did not occur until later in the susceptible variety and indicated not only more effective ABA synthesis and mobilization, but more effective feedback regulation to limit detrimental effects of too much ABA. Roots of both varieties showed differential expression of genes involved in cell wall reinforcement and remodeling to maintain cell wall strength, hydration and growth under drought stress, including genes involved in lignification and wall expansion, though the response was stronger in the tolerant variety. Such changes in leaf and root may help to limit water losses in the tolerant variety, while limiting the reduction in photosynthetic rate. These findings provide insights into molecular bases of drought tolerance mechanisms and pave the way for their reintroduction into modern cultivars with improved resistance to drought stress and yield stability under drought conditions.

6.
Clin Park Relat Disord ; 5: 100113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765965

RESUMEN

INTRODUCTION: Up to 40% of Parkinson's disease patients taking dopamine agonist medication develop impulse control behaviors which can have severe negative consequences. The current study aimed to utilize dopamine genetics to identify patients most at risk of developing these behaviors. METHODS: Demographic, clinical, and genetic data were obtained from the Parkinson's Progression Markers Initiative for de novo patients (n = 327), patients taking dopamine agonists (n = 146), and healthy controls (n = 160). Impulsive behaviors were identified using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease. A dopamine genetic risk score was calculated for each patient according to polymorphisms in genes coding for dopamine D1, D2 and D3 receptors, and catechol-O-methyltransferase. A higher score reflected higher central dopamine neurotransmission. RESULTS: Patients on agonists with a low dopamine genetic risk score were over 18 times more likely to have an impulsive behavior compared to higher scores (p = 0.04). The 38% of patients taking agonists who had at least one impulsive behavior were more likely to be male and report higher Unified Parkinson's Disease Rating Scale I&II scores. With increasing time on dopamine agonists (range 92-2283 days, mean 798 ± 565 standard deviation), only patients with a high dopamine genetic risk score showed an increase in number of impulsive behaviors (p = 0.033). Predictive effects of the gene score were not present in de novo or healthy control. CONCLUSIONS: A dopamine genetic risk score can identify patients most at risk of developing impulsive behaviors on dopamine agonist medication and predict how these behaviors may worsen over time.

7.
Front Plant Sci ; 12: 612843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643346

RESUMEN

Traditional phenotyping techniques have long been a bottleneck in breeding programs and genotype- phenotype association studies in potato, as these methods are labor-intensive and time consuming. In addition, depending on the trait measured and metric adopted, they suffer from varying degrees of user bias and inaccuracy, and hence these challenges have effectively prevented the execution of large-scale population-based field studies. This is true not only for commercial traits (e.g., yield, tuber size, and shape), but also for traits strongly associated with plant performance (e.g., canopy development, canopy architecture, and growth rates). This study demonstrates how the use of point cloud data obtained from low-cost UAV imaging can be used to create 3D surface models of the plant canopy, from which detailed and accurate data on plant height and its distribution, canopy ground cover and canopy volume can be obtained over the growing season. Comparison of the canopy datasets at different temporal points enabled the identification of distinct patterns of canopy development, including different patterns of growth, plant lodging, maturity and senescence. Three varieties are presented as exemplars. Variety Nadine presented the growth pattern of an early maturing variety, showing rapid initial growth followed by rapid onset of senescence and plant death. Varieties Bonnie and Bounty presented the pattern of intermediate to late maturing varieties, with Bonnie also showing early canopy lodging. The methodological approach used in this study may alleviate one of the current bottlenecks in the study of plant development, paving the way for an expansion in the scale of future genotype-phenotype association studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA