Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34052872

RESUMEN

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Norfloxacino , Aceites Volátiles , Piper , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Norfloxacino/química , Norfloxacino/farmacología , Aceites Volátiles/farmacología , Piper/química , Piper/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
2.
Food Chem Toxicol ; 136: 111023, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31866146

RESUMEN

The present study evaluated the effect of the essential oil of Mikania cordifolia (EOMc) and its major constituent limonene alone or associated with antibacterial drugs against Multidrug Resistant Bacteria (MDR). To evaluate the antibacterial activity, the minimum inhibitory concentrations (MIC) of the oil and limonene against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were determined. The antibiotic-modulating activity was assessed using subinhibitory concentrations (MIC/8) of these substances in combination with conventional antibacterial drugs. Although no relevant antibacterial activity of the natural products was detected, both substances modulated the action of antibiotics against resistant bacteria. The EOMc demonstrated the best modulating effect against P. aeruginosa, presenting synergistic effects when associated with gentamicin and norfloxacin. In addition, the oil reduced the MIC of norfloxacin against E. coli as well as reduced the MIC of gentamicin against S. aureus. On the other hand, the best effect of limonene was obtained against S. aureus. Thus, it is concluded that the essential oil Mikania cordifolia and the isolated compound limonene do not have clinically significant antibacterial effect, but modulate the action of antibiotics against MDR bacteria.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Limoneno/farmacología , Mikania/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Norfloxacino/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA