Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(14): 147202, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702204

RESUMEN

We report an experimental and theoretical study of the low-temperature specific heat C and magnetic susceptibility χ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs_{2}CuCl_{4-x}Br_{x} with x=0, 1, 2, and 4. We find that the ratio J^{'}/J of the exchange couplings ranges from 0.32 to ≈0.78, implying a change (crossover or quantum phase transition) in the materials' magnetic properties from one-dimensional (1D) behavior for J^{'}/J<0.6 to two-dimensional (2D) behavior for J^{'}/J≈0.78. For J^{'}/J<0.6, realized for x=0, 1, and 4, we find a magnetic contribution to the low-temperature specific heat, C_{m}∝T, consistent with spinon excitations in 1D spin-1/2 Heisenberg antiferromagnets. Remarkably, for x=2, where J^{'}/J≈0.78 implies a 2D magnetic character, we also observe C_{m}∝T. This finding, which contrasts the prediction of C_{m}∝T^{2} made by standard spin-wave theories, shows that Fermi-like statistics also plays a significant role for the magnetic excitations in spin-1/2 frustrated 2D antiferromagnets.

2.
Phys Rev Lett ; 120(20): 207205, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864334

RESUMEN

We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo_{2}V_{2}O_{8} as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of T_{N}∼5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v(B) and a clear minimum of temperature T(B) at B_{⊥}^{c,3D}=21.4 T, indicating the suppression of the antiferromagnetic order. At higher fields, the T(B) curve shows a broad minimum at B_{⊥}^{c}=40 T, accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter Γ_{B}∝(B-B_{⊥}^{c})^{-1}. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA