Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 57, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627772

RESUMEN

INTRODUCTION: Despite recent technological advances that have led to sophisticated bionic prostheses, attaining embodied solutions still remains a challenge. Recently, the investigation of prosthetic embodiment has become a topic of interest in the research community, which deals with enhancing the perception of artificial limbs as part of users' own body. Surface electromyography (sEMG) interfaces have emerged as a promising technology for enhancing upper-limb prosthetic control. However, little is known about the impact of these sEMG interfaces on users' experience regarding embodiment and their interaction with different functional levels. METHODS: To investigate this aspect, a comparison is conducted among sEMG configurations with different number of sensors (4 and 16 channels) and different time delay. We used a regression algorithm to simultaneously control hand closing/opening and forearm pronation/supination in an immersive virtual reality environment. The experimental evaluation includes 24 able-bodied subjects and one prosthesis user. We assess functionality with the Target Achievement Control test, and the sense of embodiment with a metric for the users perception of self-location, together with a standard survey. RESULTS: Among the four tested conditions, results proved a higher subjective embodiment when participants used sEMG interfaces employing an increased number of sensors. Regarding functionality, significant improvement over time is observed in the same conditions, independently of the time delay implemented. CONCLUSIONS: Our work indicates that a sufficient number of sEMG sensors improves both, functional and subjective embodiment outcomes. This prompts discussion regarding the potential relationship between these two aspects present in bionic integration. Similar embodiment outcomes are observed in the prosthesis user, showing also differences due to the time delay, and demonstrating the influence of sEMG interfaces on the sense of agency.


Asunto(s)
Miembros Artificiales , Humanos , Electromiografía/métodos , Extremidad Superior , Mano , Algoritmos
2.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046129

RESUMEN

In rehabilitation, assistive and space robotics, the capability to track the body posture of a user in real time is highly desirable. In more specific cases, such as teleoperated extra-vehicular activity, prosthetics and home service robotics, the ideal posture-tracking device must also be wearable, light and low-power, while still enforcing the best possible accuracy. Additionally, the device must be targeted at effective human-machine interaction. In this paper, we present and test such a device based upon commercial inertial measurement units: it weighs 575 grams in total, lasts up to 10.5 hours of continual operation, can be donned and doffed in under a minute and costs less than 290 EUR. We assess the attainable performance in terms of error in an online trajectory-tracking task in Virtual Reality using the device through an experiment involving 10 subjects, showing that an average user can attain a precision of 0.66 cm during a static precision task and 6.33 cm while tracking a moving trajectory, when tested in the full peri-personal space of a user.


Asunto(s)
Monitoreo Fisiológico/economía , Monitoreo Fisiológico/instrumentación , Adulto , Simulación por Computador , Costos y Análisis de Costo , Humanos , Masculino , Postura , Realidad Virtual
4.
Front Robot AI ; 9: 919370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172305

RESUMEN

Repetitive or tiring tasks and movements during manual work can lead to serious musculoskeletal disorders and, consequently, to monetary damage for both the worker and the employer. Among the most common of these tasks is overhead working while operating a heavy tool, such as drilling, painting, and decorating. In such scenarios, it is desirable to provide adaptive support in order to take some of the load off the shoulder joint as needed. However, even to this day, hardly any viable approaches have been tested, which could enable the user to control such assistive devices naturally and in real time. Here, we present and assess the adaptive Paexo Shoulder exoskeleton, an unobtrusive device explicitly designed for this kind of industrial scenario, which can provide a variable amount of support to the shoulders and arms of a user engaged in overhead work. The adaptive Paexo Shoulder exoskeleton is controlled through machine learning applied to force myography. The controller is able to determine the lifted mass and provide the required support in real time. Twelve subjects joined a user study comparing the Paexo driven through this adaptive control to the Paexo locked in a fixed level of support. The results showed that the machine learning algorithm can successfully adapt the level of assistance to the lifted mass. Specifically, adaptive assistance can sensibly reduce the muscle activity's sensitivity to the lifted mass, with an observed relative reduction of up to 31% of the muscular activity observed when lifting 2 kg normalized by the baseline when lifting no mass.

5.
Biomed Phys Eng Express ; 8(1)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34757953

RESUMEN

Objective.Bimanual humanoid platforms for home assistance are nowadays available, both as academic prototypes and commercially. Although they are usually thought of as daily helpers for non-disabled users, their ability to move around, together with their dexterity, makes them ideal assistive devices for upper-limb disabled persons, too. Indeed, teleoperating a bimanual robotic platform via muscle activation could revolutionize the way stroke survivors, amputees and patients with spinal injuries solve their daily home chores. Moreover, with respect to direct prosthetic control, teleoperation has the advantage of freeing the user from the burden of the prosthesis itself, overpassing several limitations regarding size, weight, or integration, and thus enables a much higher level of functionality.Approach.In this study, nine participants, two of whom suffer from severe upper-limb disabilities, teleoperated a humanoid assistive platform, performing complex bimanual tasks requiring high precision and bilateral arm/hand coordination, simulating home/office chores. A wearable body posture tracker was used for position control of the robotic torso and arms, while interactive machine learning applied to electromyography of the forearms helped the robot to build an increasingly accurate model of the participant's intent over time.Main results.All participants, irrespective of their disability, were uniformly able to perform the demanded tasks. Completion times, subjective evaluation scores, as well as energy- and time- efficiency show improvement over time on short and long term.Significance.This is the first time a hybrid setup, involving myoeletric and inertial measurements, is used by disabled people to teleoperate a bimanual humanoid robot. The proposed setup, taking advantage of interactive machine learning, is simple, non-invasive, and offers a new assistive solution for disabled people in their home environment. Additionnally, it has the potential of being used in several other applications in which fine humanoid robot control is required.


Asunto(s)
Robótica , Dispositivos de Autoayuda , Actividades Cotidianas , Electromiografía , Humanos , Robótica/métodos , Extremidad Superior
6.
Front Neurorobot ; 14: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174821

RESUMEN

Objective: Despite numerous recent advances in the field of rehabilitation robotics, simultaneous, and proportional control of hand and/or wrist prostheses is still unsolved. In this work we concentrate on myocontrol of combined actions, for instance power grasping while rotating the wrist, by only using training data gathered from single actions. This is highly desirable since gathering data for all possible combined actions would be unfeasibly long and demanding for the amputee. Approach: We first investigated physiologically feasible limits for muscle activation during combined actions. Using these limits we involved 12 intact participants and one amputee in a Target Achievement Control test, showing that tactile myography, i.e., high-density force myography, solves the problem of combined actions to a remarkable extent using simple linear regression. Since real-time usage of many sensors can be computationally demanding, we compare this approach with another one using a reduced feature set. These reduced features are obtained using a fast, spatial first-order approximation of the sensor values. Main results: By using the training data of single actions only, i.e., power grasp or wrist movements, subjects achieved an average success rate of 70.0% in the target achievement test using ridge regression. When combining wrist actions, e.g., pronating and flexing the wrist simultaneously, similar results were obtained with an average of 68.1%. If a power grasp is added to the pool of actions, combined actions are much more difficult to achieve (36.1%). Significance: To the best of our knowledge, for the first time, the effectiveness of tactile myography on single and combined actions is evaluated in a target achievement test. The present study includes 3 DoFs control instead of the two generally used in the literature. Additionally, we define a set of physiologically plausible muscle activation limits valid for most experiments of this kind.

7.
J Neural Eng ; 16(2): 026039, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30864550

RESUMEN

OBJECTIVE: Currently, there are some 95 000 people in Europe suffering from upper-limb impairment. Rehabilitation should be undertaken right after the impairment occurs and should be regularly performed thereafter. Moreover, the rehabilitation process should be tailored specifically to both patient and impairment. APPROACH: To address this, we have developed a low-cost solution that integrates an off-the-shelf virtual reality (VR) setup with our in-house developed arm/hand intent detection system. The resulting system, called VITA, enables an upper-limb disabled person to interact in a virtual world as if her impaired limb were still functional. VITA provides two specific features that we deem essential: proportionality of force control and interactivity between the user and the intent detection core. The usage of relatively cheap commercial components enables VITA to be used in rehabilitation centers, hospitals, or even at home. The applications of VITA range from rehabilitation of patients with musculodegenerative conditions (e.g. ALS), to treating phantom-limb pain of people with limb-loss and prosthetic training. MAIN RESULTS: We present a multifunctional system for upper-limb rehabilitation in VR. We tested the system using a VR implementation of a standard hand assessment tool, the Box and Block test and performed a user study on this standard test with both intact subjects and a prosthetic user. Furthermore, we present additional applications, showing the versatility of the system. SIGNIFICANCE: The VITA system shows the applicability of a combination of our experience in intent detection with state-of-the art VR system for rehabilitation purposes. With VITA, we have an easily adaptable experimental tool available, which allows us to quickly and realistically simulate all kind of real-world problems and rehabilitation exercises for upper-limb impaired patients. Additionally, other scenarios such as prostheses simulations and control modes can be quickly implemented and tested.


Asunto(s)
Amputados/rehabilitación , Antebrazo/fisiología , Rehabilitación Neurológica/métodos , Prótesis e Implantes , Terapia de Exposición Mediante Realidad Virtual/métodos , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Rehabilitación Neurológica/instrumentación , Miembro Fantasma/fisiopatología , Miembro Fantasma/rehabilitación , Recuperación de la Función/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior/fisiología , Terapia de Exposición Mediante Realidad Virtual/instrumentación
8.
Front Neurorobot ; 10: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27909406

RESUMEN

In the frame of assistive robotics, multi-finger prosthetic hand/wrists have recently appeared, offering an increasing level of dexterity; however, in practice their control is limited to a few hand grips and still unreliable, with the effect that pattern recognition has not yet appeared in the clinical environment. According to the scientific community, one of the keys to improve the situation is multi-modal sensing, i.e., using diverse sensor modalities to interpret the subject's intent and improve the reliability and safety of the control system in daily life activities. In this work, we first describe and test a novel wireless, wearable force- and electromyography device; through an experiment conducted on ten intact subjects, we then compare the obtained signals both qualitatively and quantitatively, highlighting their advantages and disadvantages. Our results indicate that force-myography yields signals which are more stable across time during whenever a pattern is held, than those obtained by electromyography. We speculate that fusion of the two modalities might be advantageous to improve the reliability of myocontrol in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA