Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(5): 2224-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267018

RESUMEN

Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Salinidad , Piretrinas/toxicidad , Insecticidas/toxicidad , Peces/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad
2.
Environ Sci Technol ; 57(26): 9580-9591, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37350451

RESUMEN

The Longfin Smelt (Spirinchus thaleichthys) population in the San Franscisco Bay/Sacramento-San Joaquin Delta (Bay-Delta) has declined to ∼1% of its pre-1980s abundance and, as a result, is listed as threatened under the California Endangered Species Act. The reasons for this decline are multiple and complex, including the impacts of contaminants. Because the spawning and rearing seasons of Longfin Smelt coincide with the rainy season, during which concentrations of contaminants increase due to runoff, we hypothesized that early life stages may be particularly affected by those contaminants. Bifenthrin, a pyrethroid insecticide commonly used in agricultural and urban sectors, is of concern. Concentrations measured in the Bay-Delta have been shown to disrupt the behavior, development, and endocrine system of other fish species. The objective of the present work was to assess the impact of bifenthrin on the early developmental stages of Longfin Smelt. For this, embryos were exposed to 2, 10, 100, and 500 ng/L bifenthrin from fertilization to hatch, and larvae were exposed to 2, 10, and 100 ng/L bifenthrin from one day before to 3 days post-hatch. We assessed effects on size at hatch, yolk sac volume, locomotory behavior, and upper thermal susceptibility (via cardiac endpoints). Exposure to these environmentally relevant concentrations of bifenthrin did not significantly affect the cardiac function of larval Longfin Smelt; however, exposures altered their behavior and resulted in smaller hatchlings with reduced yolk sac volumes. This study shows that bifenthrin affects the fitness-determinant traits of Longfin Smelt early life stages and could contribute to the observed population decline.


Asunto(s)
Osmeriformes , Piretrinas , Contaminantes Químicos del Agua , Animales , Piretrinas/toxicidad , Especies en Peligro de Extinción
3.
Artículo en Inglés | MEDLINE | ID: mdl-36049729

RESUMEN

The Delta Smelt (Hypomesus transpacificus), once an abundant fish endemic to the Sacramento-San Joaquin Estuary, is now on the brink of extinction. Due to the high sensitivity of this species, knowledge of their stress response will be vital to their future survival and sustainability. Understanding the magnitude and kinetics of cortisol induction in Delta Smelt will provide valuable information when interpreting the degree of environmentally relevant stressors, such as warming and predator exposure. As little is known about the primary stress response and cortisol dynamics in Delta Smelt, the first aim of this study was to measure basal and maximal whole-body cortisol prior to and following exposure to a sublethal and significant netting stress at 17 and 21 °C. Our findings reveal that juvenile Delta Smelt held at 21 °C display an exacerbated stress response and a reduction in available energy compared to fish held at 17 °C. There was no evidence of the secondary stress response to the netting stress as whole-body glucose and lactate levels in treatment groups remained similar to basal values. The second aim of this study was to investigate the effect of a largemouth bass (Micropterus salmoides) predator cue, which was found to induce a significant increase in cortisol relative to control levels in juvenile Delta Smelt. Indices such as cortisol can be used as bioindicators of stress in the field and results from this study suggest that moderate temperatures and reduced predation are optimal release conditions during hatchery-based supplementation to minimize stress to this highly sensitive species.


Asunto(s)
Osmeriformes , Animales , Especies en Peligro de Extinción , Biomarcadores Ambientales , Glucosa , Hidrocortisona , Lactatos , Osmeriformes/fisiología
4.
BMC Genomics ; 22(1): 346, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985425

RESUMEN

BACKGROUND: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms' responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. RESULTS: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. CONCLUSIONS: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles.


Asunto(s)
Tortugas , Animales , Secuencia de Bases , Especificidad de la Especie , Transcriptoma , Tortugas/genética
5.
Ecotoxicology ; 30(3): 514-523, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33624205

RESUMEN

Wild-type Hyalella azteca are highly sensitive to pyrethroid insecticides and typically do not survive exposure; however, pyrethroid bioaccumulation by insecticide-resistant H. azteca is an important potential risk factor for the transfer of pyrethroids to higher trophic species in aquatic systems. In the current study, four populations of pyrethroid-resistant H. azteca with corresponding sediment samples were sampled throughout the year, and nine-current use pyrethroids (tefluthrin, fenpropathrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin) were measured. Bifenthrin was detected in every pyrethroid-resistant H. azteca tissue sample, up to 813 ng/g lipid, while cyhalothrin and permethrin were detected in fewer (18 and 28%, respectively) samples. Concurrent sampling of the sediment showed total pyrethroid concentrations exceeding toxic unit thresholds for non-resistant H. azteca survival, and confirmed the ubiquitous presence of bifenthrin at each site and sampling event. Bifenthrin concentrations in H. azteca tended to be higher in samples collected in winter months, and seasonal factors, such as temperature and rainfall, may have contributed to the noted differences in bioaccumulation. Finally, the bifenthrin and permethrin biota-sediment accumulation factors (BSAF) for pyrethroid-resistant H. azteca were similar to the BSAF values for less sensitive invertebrates, and therefore the development of resistance may enable an additional pathway for trophic transfer of pyrethroids in species that would otherwise be too sensitive to survive the exposure.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Resistencia a los Insecticidas , Insecticidas/análisis , Insecticidas/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Ecotoxicology ; 30(2): 351-360, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33566271

RESUMEN

Aquatic invertebrates can be exposed to copper from various sources, including agricultural applications. For example, concentrations up to 1000 µg L-1 are found within rice fields, where copper-containing formulations are used as fungicides and algaecides. We conducted toxicity tests to study lethal and sublethal effects of copper sulfate pentahydrate on all immature stages across two generations of Culex pipiens mosquitoes as our model organism. Mortality was dose-dependent at concentrations of 500 µg L-1 and above in the first generation, and 125 µg L-1 and above in the second generation. The median lethal concentrations (LC50) of copper sulfate pentahydrate for larval Cx. pipiens were 476 ± 30.60 µg L-1 and 348.67 ± 23.20 µg L-1 for the first and second generations, respectively. Generation one pupation decreased from 96% in controls to 48% at 500 µg L-1, while the second-generation pupation decreased from 96% in controls to 17.5% at 500 µg L-1. Mortality during the pupal stage varied from 2 to 10% at 500 µg L-1 of first and second generations, respectively. Higher levels also delayed development to adulthood in both generations. The duration of the immature period was 14.8 days in controls in both generations, but when exposed at 500 µg L-1 it increased to 18.8 days in the first generation and to 20.5 days in the second generation. The chronic, multi-generation exposures in this study showed greater toxicity than reported for shorter exposures of Cx. pipiens, and confamilial taxa like Culex hortensis and Anopheles hispaniola.


Asunto(s)
Culex , Culicidae , Animales , Cobre/toxicidad , Larva , Pupa
7.
Environ Sci Technol ; 54(21): 13849-13860, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989987

RESUMEN

Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Disruptores Endocrinos/toxicidad , Etinilestradiol/toxicidad , Peces , Reproducción , Contaminantes Químicos del Agua/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-31676412

RESUMEN

The Sacramento splittail (Pogonichthys macrolepidotus) is a species of special concern that is native to the San Francisco Estuary, USA. Two genetically distinct populations exist and differ in maximal salinity tolerances. We examined the expression of 12 genes representative of osmoregulatory functions in the gill over a 14  day time course at two different salinities [11 or 14 PSU (Practical Salinity Units)] and revealed that each population showed distinct patterns of gene expression consistent with population differences in response to osmotic regimes. The relatively more salinity-tolerant San Pablo population significantly upregulated nine out of the 12 transcripts investigated on day 1 of 11 PSU salinity exposure in comparison to the day zero freshwater control. Three transcripts (nka1a, nka1b, and mmp13) were differentially expressed between the populations at 7 and 14 days of salinity exposure, suggesting a reduced ability of the relatively salinity-intolerant Central Valley population to recover. Additionally, a phylogenetic analysis of several Sacramento splittail Na+/K+-ATPase α1 sequences resulted in grouping by proposed paralog rather than species, suggesting that different paralogs of this gene may exist. These findings, together with prior research conducted on the Sacramento splittail, suggest that the San Pablo population may be able to preferentially regulate select osmoregulatory genes, including different Na+/K+-ATPase α1 paralogs, to better cope with salinity challenges.


Asunto(s)
Cyprinidae/fisiología , Regulación de la Expresión Génica , Osmorregulación , Filogenia , Salinidad , Tolerancia a la Sal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Cyprinidae/clasificación , Agua Dulce , ATPasa Intercambiadora de Sodio-Potasio/genética
9.
Aquaculture ; 5112019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32831418

RESUMEN

Delta smelt (Hypomesus transpacificus) is a critically endangered species endemic to the San Francisco Bay Delta (SFBD). Important for the conservation of this species is understanding the physiological and ecological impacts contributing to their population decline, and current studies lack information on embryonic development. Changes in patterns of salinity across the SFBD may be a particularly important environmental stressor contributing to the recruitment and survival of the species. Throughout their ontogeny, delta smelt may exhibit unique requirements and tolerances to environmental conditions including salinity. Here, we describe 22 stages of embryonic development of H. transpacificus that characterize early differentiation from the fertilized egg until hatching, allowing the identification of critical morphological features unique to this species. Additionally, we investigated aspects of physiological tolerance to environmental salinity during development. Embryos survived incubation at salinity treatments between 0.4 and 20 ppt, yet had lower hatch success at higher salinities. Prior to hatching, embryos exposed to higher salinities had increased osmolalities and reduced fractions of yolk implying that the elevated external salinity altered the physiology of the embryo and the environment internal to the chorion. Lastly, egg activation and fertilization appear to also be impacted by salinity. Altogether, we suggest that any potential tolerance to salinity during embryogenesis, a common feature in euryhaline teleost species, impacts life cycle transitions into, and out of, embryonic development. Results from this investigation should improve conservation and management practices of this species and further expand our understanding of the intimate relationship between an embryo and its environment.

10.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378879

RESUMEN

There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Peces/genética , Transcriptoma , Animales
11.
Environ Sci Technol ; 52(2): 859-867, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29240994

RESUMEN

Traditional Toxicity Identification Evaluations (TIE) are applied to identify causal agents in complex environmental samples showing toxicity and rely upon physical or chemical manipulation of samples. However, mutations conferring toxicant resistance provide the opportunity for a novel biologically based TIE. Populations within the Hyalella azteca complex from pesticide-affected waterways were 2 and 3 orders of magnitude more resistant to the pyrethroid cyfluthrin and the organophosphate chlorpyrifos, respectively, than laboratory-cultured H. azteca widely used for toxicity testing. Three resistant populations, as well as laboratory-cultured, nonresistant H. azteca, were exposed to urban and agricultural runoff. Every sample causing death or paralysis in the nonresistant individuals had no effect on pyrethroid-resistant individuals, providing strong evidence that a pyrethroid was the responsible toxicant. The lack of toxicity to chlorpyrifos-sensitive, but pyrethroid-resistant, individuals suggested chlorpyrifos was not a likely toxicant, a hypothesis supported by chemical analysis. Since these mutations that confer resistance to pesticides are highly specific, toxicity to wild-type, but not resistant animals, provides powerful evidence of causality. It may be possible to identify strains resistant to even a wider variety of toxicants, further extending the potential use of this biologically based TIE technique beyond the pyrethroid and organophosphate-resistant strains currently available.


Asunto(s)
Anfípodos , Insecticidas , Plaguicidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Mutación
12.
Artículo en Inglés | MEDLINE | ID: mdl-29958996

RESUMEN

Understanding physiological limits and the ability to acclimatize to changing conditions will determine whether species will be able to cope with further increases in water temperature. Changes in temperature may be considered to become stressful for an ectotherm when it results in reduced performance, which can lead to fitness level consequences. The relative intensity of the stressor as well as the duration of the exposure to the stressor will determine the response observed. Transcriptomic responses can potentially indicate thresholds where physiological performance begins to decline. An understanding of the cellular shifts throughout the temperature range that an organism experiences in the wild is often lacking, especially for species of conservation concern such as the delta smelt (Hypomesus transpacificus). We examined the expression of 15 genes that represented cellular responses related to stress, growth, cell proliferation and osmoregulation to show how the response patterns change to acute increases in temperatures that occur throughout the thermal distribution of the species. Several genes showed U-shaped or inverted U-shaped response patterns suggesting the presence of sub-lethal thresholds as temperatures increase. We also highlight the importance of including a temporal component to exposure studies as several genes showed a delay in the recovery to control levels at extreme temperatures. We propose that the non-linear response patterns represent sub-lethal thermal thresholds that can predict the severity of the response to thermal stressors. Identifying these sub-lethal thresholds can help differentiate between responses to routine increases in water temperature and responses that can lead to longer-term fitness impacts.


Asunto(s)
Estuarios , Peces/fisiología , Estrés Fisiológico , Temperatura , Animales , Proliferación Celular , Proteínas de Peces/genética , Peces/crecimiento & desarrollo , Proteínas de Choque Térmico/genética , Osmorregulación , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Ecotoxicology ; 27(7): 845-859, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29464532

RESUMEN

Global climate change (GCC) is likely to intensify the synergistic effects between altered physicochemical parameters [of changing habitats] and other anthropogenic threats, such as water pollution, posing increased risks to aquatic biodiversity. As such, it is critical to understand how organisms will respond to changes in water temperature and salinity in the presence of contaminants. We exposed the epibenthic amphipod Hyalella azteca to a 3 × 3 factorial treatment design of three temperatures and three salinities ranging from 12 to 18 °C and 0 to 8 parts per thousand (ppt), respectively, in combination with a low-level environmentally relevant concentration of the pyrethroid insecticide bifenthrin (1 ng/L). Effects on survival and swimming behavior were evaluated after 96 h exposure. Transcription of a select suite of genes was monitored at 24, 48, and 96 h using quantitative polymerase chain reaction (qPCR). Our results not only demonstrate that the changes in salinity and temperature result in negative effects to invertebrate survival, behavior, and gene response, but that the effects were significantly more pronounced in the presence of bifenthrin. This is particularly important since greater thermal fluctuations, changes in timing and extent of glacial melt, and changes in precipitation, could result in H. azteca experiencing lower temperatures at times that coincide with increased spraying of pyrethroids. These environmentally relevant exposures using the standard test species H. azteca provide essential information for understanding effects caused by GCC in conjunction with increasing pesticide use, further highlighting the need to incorporate GCC impacts into risk assessments of contaminants of concern.


Asunto(s)
Anfípodos/efectos de los fármacos , Insecticidas/toxicidad , Piretrinas/toxicidad , Salinidad , Temperatura , Animales , California , Cambio Climático , Relación Dosis-Respuesta a Droga , Movimiento/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
14.
Environ Sci Technol ; 51(3): 1802-1810, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28064479

RESUMEN

Assessing how endocrine disrupting compounds (EDCs) affect population dynamics requires tracking males and females (and sex-reversed individuals) separately. A key component in any sex-specific model is the "mating function" (the relationship between sex ratio and reproductive success) but this relationship is not known for any fish species. Using a model, we found that EDC effects on fish populations strongly depend upon the shape of the mating function. Additionally, masculinization is generally more detrimental to populations than feminization. We then quantified the mating function for the inland silverside (Menidia beryllina), and used those results and the model to assess the status of wild silverside populations. Contrary to the expectation that a few males can spawn with many females, silversides exhibited a nearly linear mating function. This implies that small changes in the sex ratio will reduce reproductive success. Four out of five wild silverside populations exhibited sex ratios far from 50:50 and thus are predicted to be experiencing population declines. Our results suggest that managers should place more emphasis on mitigating masculinizing rather than feminizing EDC effects. However, for species with a nearly linear mating function, such as Menidia, feminization and masculinization are equally detrimental.


Asunto(s)
Disruptores Endocrinos/toxicidad , Peces , Dinámica Poblacional , Animales , Feminización , Humanos , Masculino , Reproducción/efectos de los fármacos , Smegmamorpha
15.
J Exp Biol ; 219(Pt 11): 1705-16, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252456

RESUMEN

Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally.


Asunto(s)
Sequías , Especies en Peligro de Extinción , Estuarios , Osmeriformes/fisiología , Temperatura , Animales , California , Ambiente , Perfilación de la Expresión Génica , Ontología de Genes , Consumo de Oxígeno/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Environ Sci Technol ; 50(17): 8977-92, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27464030

RESUMEN

Pyrethroids are now the fourth most used group of insecticides worldwide. Employed in agriculture and in urban areas, they are detected in waterways at concentrations that are lethally and sublethally toxic to aquatic organisms. Highly lipophilic, pyrethroids accumulate in sediments and bioaccumulate in fishes. Additionally, these compounds are demonstrated to act as endocrine disrupting compounds (or EDCs) in mammals and fishes, and therefore interfere with endocrine signaling by blocking, mimicking, or synergizing endogenous hormones through direct receptor interactions, and indirectly via upstream signaling pathways. Pyrethroid metabolites have greater endocrine activity than their parent structures, and this activity is dependent on the enantiomer present, as some pyrethroids are chiral. Many EDCs studied thus far in fish have known estrogenic or antiestrogenic effects, and as such cause the inappropriate or altered expression of genes or proteins (i.e., Vtg-vitellogenin, Chg-choriogenin), often leading to physiological or reproductive effects. Additionally, these compounds can also interfere with other endocrine pathways and immune response. This review highlights studies that focus on the mechanisms of pyrethroid biotransformation and endocrine toxicity to fishes across a broad range of different pyrethroid types, and integrates literature on the in vitro and mammalian responses that inform these mechanisms.


Asunto(s)
Disruptores Endocrinos , Estrógenos/metabolismo , Animales , Peces/metabolismo , Plaguicidas , Piretrinas
17.
Arch Environ Contam Toxicol ; 71(2): 210-23, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27155869

RESUMEN

Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those effluents undergoing a more advanced treatment process. The availability of a widely geographically distributed estuarine model species (M. beryllina) now allows for improved assessment of treated effluent impacts across brackish, estuarine, and marine environments.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Peces/fisiología , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Animales , California , Disruptores Endocrinos/toxicidad , Expresión Génica/efectos de los fármacos , Eliminación de Residuos Líquidos
18.
Mol Ecol ; 24(19): 4960-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26339983

RESUMEN

Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change.


Asunto(s)
Aclimatación/genética , Respuesta al Choque Térmico/genética , Osmeriformes/genética , Temperatura , Transcriptoma , Animales , Cambio Climático , Especies en Peligro de Extinción , Larva/genética , Larva/fisiología , Datos de Secuencia Molecular , Osmeriformes/fisiología , Estrés Fisiológico
19.
Ecotoxicol Environ Saf ; 115: 250-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25725458

RESUMEN

Estuarine systems are among the most impacted ecosystems due to anthropogenic contaminants; however, they present unique challenges to toxicity testing with regard to varying water quality parameters. The euryhaline amphipod species, Hyalella azteca, is widely used in toxicity testing and well suited for testing estuarine water samples. Nevertheless, the influence of relevant water quality parameters on test endpoints must be quantified in order to efficiently use this species for routine monitoring. Here, we studied the influence of five water quality parameters: electrical conductivity, pH, un-ionized ammonia, dissolved oxygen and temperature, on H. azteca survival in a water column toxicity test. A model was developed to quantify and predict the independent and interacting effects of water quality variables on 10-day survival. The model allows simultaneous assessment of multiple potential predictors recorded during the tests. Data used for modeling came from 1089 tests performed on ambient water samples over a period of three years (2006-2008). The final model reflects significant effects of predictors and their two-way interactions. The effect of each level of all predictors on survival probability of H. azteca was examined by comparing levels of each predictor at a time, while holding all others at their lowest (reference) level. This study showed that predictors of survival in water column tests should not be evaluated in isolation in the interpretation of H. azteca water column tests. Our model provides a useful tool to predict expected control survival based on relevant water quality parameters, and thus enables the use of H. azteca tests for toxicity monitoring in estuaries with a wide range of water quality conditions.


Asunto(s)
Anfípodos/efectos de los fármacos , Estuarios , Contaminantes del Agua/toxicidad , Calidad del Agua , Amoníaco/análisis , Animales , Ecosistema , Conductividad Eléctrica , Modelos Logísticos , Oxígeno/análisis , Temperatura , Pruebas de Toxicidad , Agua/química
20.
Ecotoxicology ; 24(4): 746-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630500

RESUMEN

Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.


Asunto(s)
Chironomidae/efectos de los fármacos , Cloropirifos/toxicidad , Insecticidas/toxicidad , Nitrilos/toxicidad , Permetrina/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Chironomidae/crecimiento & desarrollo , Chironomidae/fisiología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Longevidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA