Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 28(57): e202201929, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35768334

RESUMEN

As hydrogen bonded frameworks are held together by relatively weak interactions, they often form several different frameworks under slightly different synthesis conditions and respond dynamically to stimuli such as heat and vacuum. However, these dynamic restructuring processes are often poorly understood. In this work, three isoreticular hydrogen bonded organic frameworks assembled through charge-assisted amidinium⋅⋅⋅carboxylate hydrogen bonds (1C/C , 1Si/C and 1Si/Si ) are studied. Three distinct phases for 1C/C and four for 1Si/C and 1Si/Si are fully structurally characterized. The transitions between these phases involve extreme yet recoverable molecular-level framework reorganization. It is demonstrated that these transformations are related to water content and can be controlled by humidity, and that the non-porous anhydrous phase of 1C/C shows reversible water sorption through single crystal to crystal restructuring. This mechanistic insight opens the way for the future use of the inherent dynamism present in hydrogen bonded frameworks.

2.
Angew Chem Int Ed Engl ; 61(15): e202117240, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146859

RESUMEN

Reactive extrusion printing (REP) is demonstrated as an approach to simultaneously crystallize and deposit films of the metal-organic framework (MOF) Cu3 btc2 (btc=1,3,5-benzenetricarboxylate), also known as HKUST-1. The technique co-delivers inks of the copper(II) acetate and H3 btc starting materials directly on-surface and on-location for rapid nucleation into films at room temperature. The films were analyzed using PXRD, profilometry, SEM and thermal analysis techniques and confirmed high-quality Cu3 btc2 films are produced in low-dispersity interconnected nanoparticulate form. The porosity was examined using gas adsorption which showed REP gives Cu3 btc2 films with open interconnected pore structures, demonstrating the method bestows features that traditional synthesis does not. REP is a technique that opens the field to time-efficient large-scale fabrication of MOF interfaces and should find use in a wide variety of coating application settings.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39109965

RESUMEN

An outstanding challenge for the field of metal-organic frameworks (MOFs) is structuring to form forms with greater useability. Reactive extrusion printing (REP) is a technique for the direct formation of films from their molecular components on-demand and on-location. Here we apply REP for the first time to zeolitic imidazolate frameworks (ZIFs) and study the interplay of solvent and molarity ratio on the phase distribution between ZIF-8 and ZIF-L in reactive printed films. Our results show that REP controllably directs phase formation between ZIF-L and ZIF-8 and that REP also gives control over crystal size and that high-quality ZIF-8 films, in particular, are produced in low-dispersity interconnected nanoparticulate form. Importantly, we show that REP is responsive to established surface-functionalization techniques to control important printing parameters of line width and thickness. This work expands the repertoire of REP to the important class of ZIFs.

4.
Chem Commun (Camb) ; 57(38): 4706-4709, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33977974

RESUMEN

Reactive inkjet printing was used for fast and facile spatially-controlled post-synthetic patterning of metal-organic framework films. Here, we report use of the reactive inkjet printing technique to rapidly produce patterned electroactive MOF films by covalent attachment of redox-responsive ferrocenyl groups to UiO-66-NH2 on FTO glass. This study paves the way for the wide applicability of reactive printing to MOF film modification.

5.
Chem Commun (Camb) ; 56(87): 13377-13380, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034313

RESUMEN

Mixed donor phenanthroline-carboxylate linkers were combined with MnII or ZnII to form photoactive MOFs with large pore apertures. The MOFs display high CO2 adsorption capacities, which consequently causes structural framework flexibility, and align with favorable metrics for selective CO2 capture. The photophysical properties of the MOFs were investigated, with the MnII MOF giving rise to short triplet LMCT lifetimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA