Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(6): 101952, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447119

RESUMEN

Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.


Asunto(s)
Lipoproteínas HDL , ARN Pequeño no Traducido , Animales , Apolipoproteína A-I/metabolismo , Aterosclerosis , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Ratones , Fosfatidilcolinas , ARN Pequeño no Traducido/química
2.
Nat Cell Biol ; 24(12): 1701-1713, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36474072

RESUMEN

Macrophages present a spectrum of phenotypes that mediate both the pathogenesis and resolution of atherosclerotic lesions. Inflammatory macrophage phenotypes are pro-atherogenic, but the stimulatory factors that promote these phenotypes remain incompletely defined. Here we demonstrate that microbial small RNAs (msRNA) are enriched on low-density lipoprotein (LDL) and drive pro-inflammatory macrophage polarization and cytokine secretion via activation of the RNA sensor toll-like receptor 8 (TLR8). Removal of msRNA cargo during LDL re-constitution yields particles that readily promote sterol loading but fail to stimulate inflammatory activation. Competitive antagonism of TLR8 with non-targeting locked nucleic acids was found to prevent native LDL-induced macrophage polarization in vitro, and re-organize lesion macrophage phenotypes in vivo, as determined by single-cell RNA sequencing. Critically, this was associated with reduced disease burden in distinct mouse models of atherosclerosis. These results identify LDL-msRNA as instigators of atherosclerosis-associated inflammation and support alternative functions of LDL beyond cholesterol transport.


Asunto(s)
Macrófagos , Receptor Toll-Like 8 , Animales , Ratones , Receptor Toll-Like 8/genética , ARN
3.
Diabetes ; 70(10): 2377-2390, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34233930

RESUMEN

Podocyte injury is important in development of diabetic nephropathy (DN). Although several studies have reported single-cell-based RNA sequencing (RNA-seq) of podocytes in type 1 DN (T1DN), the podocyte translating mRNA profile in type 2 DN (T2DN) has not previously been compared with that of T1DN. We analyzed the podocyte translatome in T2DN in podocin-Cre; Rosa26fsTRAP; eNOS-/-; db/db mice and compared it with that of streptozotocin-induced T1DN in podocin-Cre; Rosa26fsTRAP; eNOS-/- mice using translating ribosome affinity purification (TRAP) and RNA-seq. More than 125 genes were highly enriched in the podocyte ribosome. More podocyte TRAP genes were differentially expressed in T2DN than in T1DN. TGF-ß signaling pathway genes were upregulated, while MAPK pathway genes were downregulated only in T2DN, while ATP binding and cAMP-mediated signaling genes were downregulated only in T1DN. Genes regulating actin filament organization and apoptosis increased, while genes regulating VEGFR signaling and glomerular basement membrane components decreased in both type 1 and type 2 diabetic podocytes. A number of diabetes-induced genes not previously linked to podocyte injury were confirmed in both mouse and human DN. On the basis of differences and similarities in the podocyte translatome in T2DN and T1DN, investigators can identify factors underlying the pathophysiology of DN and novel therapeutic targets to treat diabetes-induced podocyte injury.


Asunto(s)
Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/patología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Podocitos/patología , Biosíntesis de Proteínas/genética , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , RNA-Seq , Análisis de Secuencia de ARN , Estreptozocina , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA