RESUMEN
East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.
Asunto(s)
Enfermedades de los Bovinos , Theileria parva , Theileria , Theileriosis , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Bovinos , Enfermedades de los Bovinos/genética , Humanos , Theileria/genética , Theileria parva/genética , Theileriosis/genética , Theileriosis/parasitologíaRESUMEN
BACKGROUND: A cross sectional study was conducted to detect and characterize species of porcine reproductive and respiratory syndrome virus (PRRSv) identified from slaughtered pigs in Lira district, northern Uganda. The study was conducted from March to September 2019 in three selected slaughter slabs. Pigs brought for slaughter were randomly sampled. At necropsy, lungs were extracted from the thoracic cavity and examined for pneumonic lesions. Seventy-three (73) pigs with gross lung lesions were sampled, from which one hundred and one (101) tissue samples were taken. A real-time reverse transcriptase PCR (RT-qPCR) was used to characterize PRRSv species. RESULTS: A total of 20 samples tested positive for PRRSv. The respective prevalence of PRRSv type 1 and type 2 were 24.65% (n = 18) and 2.73% (n = 2) respectively. Of the pigs sampled (n = 73), only two pigs, 2.73% (n = 2) tested positive to both species. The likelihood of PRRSv detection decreased with pig age, but increased with gross pneumonic pathology. CONCLUSIONS: This study demonstrated dual circulation of both species in northern Uganda. The association between PRRSv and lung pathology suggests that it may be an important cause of lung disease in pigs in Uganda and hence loss of production. This calls for further investigations on potential economic impacts of PRRSv on pig productivity. These findings contribute to discussions about the need of surveillance and possible vaccination strategies against PRRSv in Uganda.
Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Estudios Transversales , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Uganda/epidemiología , Vacunación/veterinariaRESUMEN
BACKGROUND: The Infection and Treatment Method (ITM) of vaccination is the only immunization procedure currently available to protect cattle against East Coast fever (ECF), a tick-transmitted disease responsible for losses of several hundreds of millions of dollars per year in sub-Saharan Africa. The vaccine comprises a homogenized preparation of infected ticks packaged in straws and stored in liquid nitrogen. The current manufacturing protocol results in straws containing 30-40 doses (ILRI 0804), which is impractical for immunizing small herds as found in dairy and smallholder farming systems. The ILRI 0804 SD stabilate was prepared as a 1:5 dilution of the parent stabilate, with the aim of producing vaccine stabilate straws containing between four to eight doses and thus suitable for smallholder farming systems. Infectivity of the diluted stabilate was assessed and the protective efficacy of the diluted stabilate was determined by performing experimental and field immunizations. RESULTS: Two groups of six cattle were inoculated with 1 ml of the diluted stabilate at 1:20 (equivalent to the recommended field dose for ILRI 0804, assuming no loss of sporozoite viability during thawing and refreezing) and 1:14 (assuming 30-35% loss of sporozoite viability). Schizonts were detected in all 12 animals, showing viability of sporozoites. Ten animals from the infectivity study and two control animals not previously exposed to T. parva were challenged with the parental ILRI 0804 stabilate. The results show that the two control animals displayed severe ECF reactions and were treated 14 days after challenge. Of the previously infected animals, only one underwent a severe reaction following challenge, a result in accord with the challenge experiments performed previously with the parent stabilate [Ticks Tick-Borne Dis 7:306-314, 2016]. The animal that displayed a severe reaction had no detectable schizonts and did not seroconvert following the initial inoculation with ILRI 0804 SD. In addition, 62 animals immunized under field conditions showed a mean seroconversion rate of 82%. CONCLUSION: The results presented in this article demonstrate that it is possible to prepare straws suitable for use in smallholder herds by thawing, diluting and refreezing already packaged vaccine.
Asunto(s)
Industria Lechera , Inmunización/veterinaria , Vacunas Antiprotozoos/inmunología , Theileria parva/inmunología , Theileriosis/prevención & control , Garrapatas/parasitología , Animales , Bovinos , Criopreservación/veterinaria , Embalaje de Medicamentos/métodos , Almacenaje de Medicamentos , Inmunización/métodos , Inmunogenicidad Vacunal , Vacunas Antiprotozoos/administración & dosificación , Seroconversión , Tanzanía , Garrapatas/inmunologíaRESUMEN
Influenza D virus has been identified in America, Europe, and Asia. We detected influenza D virus antibodies in cattle and small ruminants from North (Morocco) and West (Togo and Benin) Africa. Dromedary camels in Kenya harbored influenza C or D virus antibodies, indicating a potential new host for these viruses.
Asunto(s)
Anticuerpos Antivirales/sangre , Gammainfluenzavirus/aislamiento & purificación , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Rumiantes/virología , Thogotovirus/aislamiento & purificación , Animales , Benin/epidemiología , Camelus , Bovinos , Cabras , Pruebas de Inhibición de Hemaglutinación , Gammainfluenzavirus/clasificación , Gammainfluenzavirus/inmunología , Kenia/epidemiología , Marruecos/epidemiología , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Ovinos , Porcinos , Thogotovirus/clasificación , Thogotovirus/inmunología , Togo/epidemiología , Carga ViralRESUMEN
BACKGROUND: The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. METHODS: This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. RESULTS: There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8-39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5-32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8-32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7-22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2-0.9); Coxiella burnetii, 2.2% (95% CI 1.5-2.9); Rift Valley fever, 0.5% (95% CI 0.2-0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0-0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5-2.22)) and C. burnetii (10.0% (95% CI 7.7-12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7-58.3) in cattle and 17.2% (95% CI 9.1-25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3-3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8-9.6) in people. CONCLUSION: Zoonotic infections in people and animals occur in the context of a wide range of co-endemic pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.
Asunto(s)
Enfermedades de los Bovinos/epidemiología , Zoonosis/epidemiología , Animales , Brucella/patogenicidad , Brucelosis/epidemiología , Bovinos , Coxiella burnetii/patogenicidad , Estudios Transversales , Composición Familiar , Humanos , Kenia/epidemiología , Lagos , Ganado , Prevalencia , Fiebre Q/epidemiología , Fiebre del Valle del Rift/epidemiología , Población Rural , Sus scrofa , PorcinosRESUMEN
Introduction: Non-typhoidal Salmonella (NTS) is a major cause of gastroenteritis worldwide, often associated with meat consumption and meat processing. Research on NTS infection and circulating serovars in meat value chains in Uganda is limited. We aimed to establish NTS prevalence, antimicrobial resistance, and risk factors among slaughterhouse workers, and to identify potentially zoonotic serovars in the pork value chain. Material and methods: We conducted a nationwide cross-sectional survey, collecting 364 stool samples from livestock slaughterhouse workers and 1,535 samples from the pork value chain: mesenteric lymph nodes, fecal samples, swabs of carcass splitting floor, cleaning water, meat handlers hand swabs, carcass swabs, raw pork, cooked pork, and mixed raw vegetables. Samples were cultured for isolation of NTS, and subsequently serotyped according to White-Kauffmann-Le Minor scheme. Antimicrobial resistance profiles were determined using tube microdilution and Sensititre® EUVSEC3® plates. Semi- structured questionnaires with 35 questions were used to collect data on demographics, work related risk factors and activities outside the slaughterhouse. Results and discussion: Overall NTS prevalence was 19.2% (365/1899). Proportions at slaughter were; 46.7% in floor swabs, 30.5% in carcass swabs, 20.5% in pig faeces,19.2% in mesenteric lymph nodes,18.4% in hand swabs, 9.5% in water and 5.2% in slaughterhouse workers. At retail, proportions were 33.8% in pork chopping surface, 33.1% in raw pork, 18.9% in hand swabs, 4.0% in cooked pork and 0.7% in vegetables. Sixty-one serovars were identified, with significant overlap between humans and the pork value chain. Overall, zoonotic S. Zanzibar, monophasic serovars of S. subspecies salamae (II) and subspecies enterica (I), S. Typhimurium and S. Newport, were the most prevalent. S. Typhimurium was predominant in humans and exhibited multi-drug resistance. NTS infection was significantly associated with eating, drinking, or smoking while working (OR = 1.95, 95% CI: 0.67-2.90%, p = 0.004). The detected NTS serovars in slaughterhouse workers could be a potential indicator of circulating serovars in the general population. The persistent presence of NTS along the pork value chain highlights occurrence of cross-contamination and the potential for transmission to consumers and slaughterhouse workers. This emphasizes the need to reduce Salmonella prevalence on pig farms and improve hygiene and pork handling practices at slaughter and retail points.
RESUMEN
Introduction: Smallholder pig farming is an important economic activity for many poor, rural communities in developing countries. Porcine cysticercosis is a growing public health risk in countries where pig rearing is popular. A sanitation-based intervention to reduce the prevalence of open defecation was completed in Busia County, Kenya in 2016. We capitalized on this third party intervention to evaluate its impact on porcine cysticercosis prevalence. Methods: We conducted a comparative cross-sectional survey from August through to September 2021. Household selection was done using multistage sampling. Household questionnaire data on pig production, transmission, risk factors and awareness of porcine cysticercosis were collected from 251 households. Lingual palpation was used to test for cysticerci in 370 pigs while serum was tested for circulating antigen using Ag-ELISA. We compared results of our survey to an effective baseline, which was a near equivalent cross sectional survey conducted in 2012 before the third party sanitary intervention was established. The difference in prevalence was measured using Chi-square tests. Multivariable logistic regression analysis was used to identify risk factors for lingual cysts in pigs. Results: The prevalence of palpable lingual cysts was estimated to be 3.8% (95% CI 2.3-6.3%) (14/370). This was 6% (95% CI 0.8-13.9%; p-value 0.0178) lower than the prevalence reported in the pre-implementation period of 9.7% (95% CI: 4.5-17.6%). Circulating antigen was detected in 2 samples (0.54%, 95% CI: 0.2-1.9). Latrine coverage was 86% (95% CI: 81-90%), which was 11% (95% CI: 4.8-16.8%; p < 0.001) higher than the pre-implementation period coverage of 75% (95% CI: 71-79%). There was reduced prevalence of lingual cysts in pigs from households that had a latrine (OR = 0.14; 95% CI: 0.05-0.43; p < 0.001) and where pigs were confined or tethered (OR = 0.27; 95% CI: 0.07-1.02; p = 0.053). Conclusion: There was a reduction in the prevalence of porcine cysticercosis in Busia County over the study period from 2012 to 2021. This was not a trial design so we are unable to directly link the decline to a specific cause, but the data are consistent with previous research indicating that improved sanitation reduces porcine cysticercosis. Programs for controlling porcine cysticercosis should include a focus on sanitation in addition to other integrated One Health approaches.
RESUMEN
Introduction: Campylobacter bacteria is a major cause of foodborne-related bacterial gastroenteritis in humans worldwide. It is known to cause diarrhea in young children which has been shown to directly affect their weight and height as a result of malnutrition. Severe cases of diarrhea can also lead to death. Most of the burden is experienced in resource-limited countries in Africa and Southeast Asia where the disease is linked to poor hygiene and sanitation. The objective of this study was to determine the prevalence of Campylobacter in children aged between 6 and 24 months in Nairobi, Kenya and identify potential risk factors associated with their occurrence. Methods: A cross-sectional study was carried out between May to December 2021. A total of 585 randomly selected households were visited in two wards (Uthiru/Ruthimitu and Riruta) in Dagoretti South sub-county, Nairobi. A questionnaire regarding how children's food is handled, the major foods consumed, sanitation and hygiene, and animal ownership was conducted among caregivers to identify associated risk factors. Stool samples were collected from 540/585 children and screened for the presence of Campylobacter using culture-based methods and confirmed through PCR. Results: Of the 540 children's stool samples processed, Campylobacter isolates were detected in 4.8% (26/540). Campylobacter jejuni (C. jejuni) was the most common species in 80.8% of positive samples compared to Campylobacter coli (C. coli) in 26.9% of samples. In six samples, both C. jejuni and C. coli were isolated, while in four samples, it was not possible to speciate the Campylobacter. Drinking cow's milk (OR 4.2, 95% CI 1.4 - 12.6) and the presence of animal feces in the compound (OR 3.4, 95% CI 1.1 - 10.3) were found to be statistically associated with Campylobacter carriage in children. Discussion: The carriage of Campylobacter in children in this community indicates a need for further investigation on source attribution to understand transmission dynamics and inform where to target interventions. Awareness creation among caregivers on good personal and food hygiene is needed, including boiling milk before consumption. Implementation of biosecurity measures at the household level is highly recommended to reduce contact between animals and humans.
Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Animales , Bovinos , Niño , Preescolar , Femenino , Humanos , Lactante , Estudios Transversales , Diarrea/epidemiología , Kenia/epidemiología , Prevalencia , Factores de Riesgo , Infecciones por Campylobacter/epidemiología , Gastroenteritis/epidemiología , Gastroenteritis/microbiologíaRESUMEN
Escherichia coli commonly inhabits the gut of humans and animals as part of their microbiota. Though mostly innocuous, some strains have virulence markers that make them pathogenic. This paper presents results of a cross-sectional epidemiological study examining prevalence of diarrheagenic E. coli (DEC) pathotypes in stool samples of asymptomatic healthy children (n = 540) in Dagoretti South subcounty, Nairobi, Kenya. E. coli was cultured and pathotyped using PCR to target specific virulence markers associated with Shiga-toxin, enteropathogenic, enterotoxigenic, enteroaggregative, entero-invasive and diffusely adherent E. coli. Overall prevalence of DEC pathotypes was 20.9% (113/540) with enteropathogenic E. coli being the most prevalent (34.1%), followed by enteroaggregative E. coli (23.5%) and Shiga-toxin producing E. coli (22.0%) among positive samples. We found evidence of co-infection with multiple pathotypes in 15% of the positive samples. Our models indicated that at the household level, carriage of DEC pathotypes in children was associated with age group [12-18 months] (OR 1.78; 95%CI 1.03-3.07; p = 0.04), eating matoke (mashed bananas) (OR 2.32; 95%CI 1.44-3.73; p = 0.001) and pulses/legumes (OR 1.74; 95%CI 1.01-2.99; p = 0.046) while livestock ownership or contact showed no significant association with DEC carriage (p>0.05). Our findings revealed significant prevalence of pathogenic DEC circulating among presumptive healthy children in the community. Since there has been no previous evidence of an association between any food type and DEC carriage, unhygienic handling, and preparation of matoke and pulses/legumes could be the reason for significant association with DEC carriage. Children 12-18 months old are more prone to DEC infections due to exploration and hand-to-mouth behavior. A detailed understanding is required on what proportion of positive cases developed severe symptomatology as well as fatal outcomes. The co-infection of pathotypes in the rapidly urbanizing environment needs to be investigated for hybrid or hetero-pathotype circulation that have been implicated in previous infection outbreaks.
RESUMEN
Taenia solium cysticercosis is the most common cause of acquired epilepsy in pig-raising and pork-consuming parts of Africa, Latin America, and Asia. This review aimed to systematically compile and synthesize data on the epidemiology of porcine cysticercosis in the Eastern and Southern Africa (ESA) region. Comprehensive searching strategies were employed to retrieve the studies published or reported between January 1,1997 and March 1, 2021, from Pub Med, Hinari, and Google Scholar databases and search platforms. The identified studies that met the inclusion criteria were then appraised for methodological quality. Finally, 44 studies obtained from nine countries were selected and included in this review. Relevant data were extracted using standardized templates for qualitative synthesis and meta-analysis. The overall pooled prevalence estimate of porcine cysticercosis in the ESA region was 17% (95% CI: 14-20%). The prevalence level between and within countries showed high variability. The pooled estimate showed high heterogeneity among the reports (the inverse variance index value (I2) of 98.99%, p < 0.05). The meta-analysis sub-grouped by the type of diagnostic test showed the pooled prevalence estimate of 27% (95% CI: 9-50) by carcass dissection; 23% (95% CI: 14-33) by Antibody-based immunodiagnostic techniques; 23% (95% CI: 18-29) by antigen detecting (Ag)-ELISA, 12% (95% CI: 7-18) by meat inspection, and 9% (95% CI: 7-11) by lingual examination. The meta-analysis sub-grouped by region showed a relatively higher pooled prevalence estimate for the Southern region 22% (95% CI: 15-30) compared to 13% (95% CI: 11-15) in the Eastern region. The highest country-based pooled prevalence was obtained from South Africa (33%, 95% CI: 20-48) and Zambia (22%, 95% CI: 16-29), whereas the lowest pooled prevalence was identified in Madagascar (5%, 95% CI: 4-5) and Rwanda (7%, 95% CI: 6-8). The lack of latrine, traditional pig husbandry practices, unprotected water sources, and increase in age were identified as significant risk factors for the occurrence of porcine cysticercosis in the pooled studies. The findings of this review will provide context-specific input to prioritize the possible intervention programs for T. solium control in the ESA region. More sensitive and specific test-based prevalence estimates, detailed risk factor investigations, and financial losses analysis are needed to establish feasible control strategies. Systematic Review Registration: http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021238931.
Asunto(s)
Cisticercosis , Enfermedades de los Porcinos , África Austral , Animales , Cisticercosis/epidemiología , Cisticercosis/veterinaria , Ensayo de Inmunoadsorción Enzimática , Porcinos , Enfermedades de los Porcinos/epidemiologíaRESUMEN
Introduction: Bovine viral diarrhea virus (BVDV) causes reproductive inefficiencies and negatively impacts the economy of low- and middle-income countries (LMICs). It is characterized by a combination of syndromes that result in poor production performance and calf morbidity and mortality. BVDV control is possible by introduction of biosecurity measures, test-and-cull, and vaccination programs as accomplished in high-income countries. Knowledge of BVDV epidemiology is limited in many LMICs, which hinders implementation of effective control programs. We carried out a systematic review and meta-analysis to estimate the burden of BVDV, identify risk factors related to its occurrence, and health and economic impacts on production systems. Materials and Methods: Relevant BVD articles were collated from library databases; 690 abstracts and full texts were found in an initial search followed by filtering of 59 manuscripts. We accounted for quality and risk of bias in the meta-analysis. Prevalence, exposure, and current infection at regional, production, and farming system levels were estimated using logistic random-effects meta-regression models. Finally, we calculated the proportion of studies that addressed risk factors and health and economic impacts across different production systems to inform future preventative strategies in LMICs. Results: Seroprevalence was high and varied between regions. Mean weighted prevalence was 39.5% (95% CI 25-56.1), 45.2% (95% CI 35.9-54.8), 49.9% (95% CI 25.5-74.3), and 21.6% (95% CI 0.5-56) for sub-Saharan Africa, South America, Middle East, and Asia, respectively. Seroprevalence varied across farming systems, with smallholder farming showing the highest values. Herdsize was the most frequently reported risk factor, and the percentage of articles that reported herdsize as a risk factor were 20.6%, 33.3%, and 38.4% for dairy, beef and mixed systems respectively. Abortion (13.7% of articles) was the main reported health impact in dairy systems. Some articles reported milk drop (4.6% of articles), but no article investigated the economic cost of BVDV in farming systems. Conclusion: Animal-level seroprevalence varied across all regions. Most of the studies focused on BVDV seroprevalence. There were some articles that investigated risk factors and health impacts, and there were even less that investigated economic impacts. Future studies should focus on identifying risk factors and quantifying health and economic impacts across systems. Understanding these aspects is crucial to develop management strategies to apply across diverse production systems in LMICs.
RESUMEN
Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community.
RESUMEN
Abattoir workers have been identified as high-risk for livestock-associated Staphylococcus aureus carriage. This study investigated S. aureus carriage in abattoir workers in Western Kenya. Nasal swabs were collected once from participants between February-November 2012. S. aureus was isolated using bacterial culture and antibiotic susceptibility testing performed using the VITEK 2 instrument and disc diffusion methods. Isolates underwent whole genome sequencing and Multi Locus Sequence Types were derived from these data. S. aureus (n = 126) was isolated from 118/737 (16.0%) participants. Carriage was higher in HIV-positive (24/89, 27.0%) than HIV−negative participants (94/648, 14.5%; p = 0.003). There were 23 sequence types (STs) identified, and half of the isolates were ST152 (34.1%) or ST8 (15.1%). Many isolates carried the Panton-Valentine leucocidin toxin gene (42.9%). Only three isolates were methicillin resistant S. aureus (MRSA) (3/126, 2.4%) and the prevalence of MRSA carriage was 0.4% (3/737). All MRSA were ST88. Isolates from HIV-positive participants (37.0%) were more frequently resistant to sulfamethoxazole/trimethoprim compared to isolates from HIV-negative participants (6.1%; p < 0.001). Similarly, trimethoprim resistance genes were more frequently detected in isolates from HIV-positive (81.5%) compared to HIV-negative participants (60.6%; p = 0.044). S. aureus in abattoir workers were representative of major sequence types in Africa, with a high proportion being toxigenic isolates. HIV-positive individuals were more frequently colonized by antimicrobial resistant S. aureus which may be explained by prophylactic antimicrobial use.
RESUMEN
Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host-pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0-17.1). Humans aged 21-40 years had higher odds (OR = 2.8, 95% CI 1.2-6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1-4.6) and camels (OR = 2.9, 95% CI 1.3-6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0-6.7) and goats (OR = 1.7, 95% CI 1.0-3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.
Asunto(s)
Brucella/genética , Brucelosis/epidemiología , Interacciones Huésped-Patógeno , Ganado , Adulto , Animales , Brucelosis/microbiología , Ecosistema , Femenino , Humanos , Kenia/epidemiología , Masculino , Epidemiología Molecular , Adulto JovenRESUMEN
Theileria parva is the causative agent of East Coast fever and Corridor disease, which are fatal, economically important diseases of cattle in eastern, central and southern Africa. Improved methods of control of the diseases are urgently required. The parasite transforms host lymphocytes, resulting in a rapid, clonal expansion of infected cells. Resistance to the disease has long been reported in cattle from T. parva-endemic areas. We reveal here that first- and second-generation descendants of a single Bos indicus bull survived severe challenge with T. parva, (overall survival rate 57.3% compared to 8.7% for unrelated animals) in a series of five field studies. Tolerant cattle displayed a delayed and less severe parasitosis and febrile response than unrelated animals. The in vitro proliferation of cells from surviving cattle was much reduced compared to those from animals that succumbed to infection. Additionally, some pro-inflammatory cytokines such as IL1ß, IL6, TNFα or TGFß which are usually strongly expressed in susceptible animals and are known to regulate cell growth or motility, remain low in tolerant animals. This correlates with the reduced proliferation and less severe clinical reactions observed in tolerant cattle. The results show for the first time that the inherited tolerance to T. parva is associated with decreased proliferation of infected lymphocytes. The results are discussed in terms of whether the reduced proliferation is the result of a perturbation of the transformation mechanism induced in infected cells or is due to an innate immune response present in the tolerant cattle.
Asunto(s)
Theileria parva , Theileriosis , Animales , Bovinos , Proliferación Celular , Linfocitos , MasculinoRESUMEN
Corridor disease (CD) is a fatal condition of cattle caused by buffalo-derived Theileria parva. Unlike the related condition, East Coast fever, which results from infection with cattle-derived T. parva, CD has not been extensively studied. We describe in detail the clinical and laboratory findings in cattle naturally infected with buffalo-derived T. parva. Forty-six cattle were exposed to buffalo-derived T. parva under field conditions at the Ol Pejeta Conservancy, Kenya, between 2013 and 2018. The first signs of disease observed in all animals were nasal discharge (mean day of onset was 9 days post-exposure), enlarged lymph nodes (10 days post-exposure), and pyrexia (13.7 days post-exposure). Coughing and labored breathing were observed in more than 50% of animals (14 days post-exposure). Less commonly observed signs, corneal edema (22%) and diarrhea (11%), were observed later in the disease progression (19 days post-exposure). All infections were considered clinically severe, and 42 animals succumbed to infection. The mean time to death across all studies was 18.4 days. The mean time from onset of clinical signs to death was 9 days and from pyrexia to death was 4.8 days, indicating a relatively short duration of clinical illness. There were significant relationships between days to death and the days to first temperature (chi2 = 4.00, p = 0.046), and days to peak temperature (chi2 = 25.81, p = 0.001), animals with earlier onset pyrexia died sooner. These clinical indicators may be useful for assessing the severity of disease in the future. All infections were confirmed by the presence of macroschizonts in lymph node biopsies (mean time to parasitosis was 11 days). Piroplasms were detected in the blood of two animals (4%) and 20 (43%) animals seroconverted. In this study, we demonstrate the successful approach to an experimental field study for CD in cattle. We also describe the clinical progression of CD in naturally infected cattle, including the onset and severity of clinical signs and pathology. Laboratory diagnoses based on examination of blood samples are unreliable, and alternatives may not be available to cattle keepers. The rapid development of CD requires recognition of the clinical signs, which may be useful for early diagnosis of the disease and effective intervention for affected animals.
RESUMEN
African Animal Trypanosomiasis (AAT) is a tsetse-transmitted protozoan disease endemic in "the tsetse belt" of Africa. Past studies investigating the epidemiology of the disease rarely focused on spatial distribution when reporting the prevalence. The challenge of understanding the spatial epidemiology of the disease is further confounded by low-sensitive parasitological techniques used in field investigations. This study aimed to identify trypanosome species in cattle and their spatial distribution in western Kenya. Low-sensitive microscopic analysis and highly-sensitive polymerase chain reaction (PCR) techniques were also compared to better understand the epidemiology of Trypanosoma infections by use of the geographical information system (GIS). Blood samples from 888 cattle, collected between August 2010 and July 2012, were examined for Trypanosoma parasites by light microscopy and PCR. The spatial distribution of Trypanosoma positive cases by species were mapped and overlaid on the map for tsetse distribution. The estimated prevalence was 4.17% by PCR compared to 2.48% by microscopy. Trypanosomes were detected in tsetse free areas. Trypanosoma vivax and Trypanosoma b. brucei were identified, but not the zoonotic Trypanosoma b. rhodesiense. This study demonstrated the importance of geospatial data analysis to understand the epidemiology of the parasite, to inform future research and formulate control strategies.
RESUMEN
Middle East respiratory syndrome (MERS) is a respiratory disease caused by a zoonotic coronavirus (MERS-CoV). Camel handlers, including slaughterhouse workers and herders, are at risk of acquiring MERS-CoV infections. However, there is limited evidence of infections among camel handlers in Africa. The purpose of this study was to determine the presence of antibodies to MERS-CoV in high-risk groups in Kenya. Sera collected from 93 camel handlers, 58 slaughterhouse workers and 35 camel herders, were screened for MERS-CoV antibodies using ELISA and PRNT. We found four seropositive slaughterhouse workers by PRNT. Risk factors amongst the slaughterhouse workers included being the slaughterman (the person who cuts the throat of the camel) and drinking camel blood. Further research is required to understand the epidemiology of MERS-CoV in Africa in relation to occupational risk, with a need for additional studies on the transmission of MERS-CoV from dromedary camels to humans, seroprevalence and associated risk factors.
Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Mataderos , Adulto , Animales , Anticuerpos Neutralizantes/sangre , Camelus/virología , Reservorios de Enfermedades/virología , Ensayo de Inmunoadsorción Enzimática , Humanos , Kenia/epidemiología , Masculino , Exposición Profesional , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estudios Seroepidemiológicos , Zoonosis/virologíaRESUMEN
The neglected tropical diseases (NTDs) are characterized by their tendency to cluster within groups of people, typically the poorest and most marginalized. Despite this, measures of clustering, such as within-group correlation or between-group heterogeneity, are rarely reported from community-based studies of NTD risk. We describe a general contextual analysis that uses multi-level models to partition and quantify variation in individual NTD risk at multiple grouping levels in rural Kenya. The importance of general contextual effects (GCE) in structuring variation in individual infection with Schistosoma mansoni, the soil-transmitted helminths, Taenia species, and Entamoeba histolytica/dispar was examined at the household-, sublocation- and constituency-levels using variance partition/intra-class correlation co-efficients and median odds ratios. These were compared with GCE for HIV, Plasmodium falciparum and Mycobacterium tuberculosis. The role of place of residence in shaping infection risk was further assessed using the spatial scan statistic. Individuals from the same household showed correlation in infection for all pathogens, and this was consistently highest for the gastrointestinal helminths. The lowest levels of household clustering were observed for E. histolytica/dispar, P. falciparum and M. tuberculosis. Substantial heterogeneity in individual infection risk was observed between sublocations for S. mansoni and Taenia solium cysticercosis and between constituencies for infection with S. mansoni, Trichuris trichiura and Ascaris lumbricoides. Large overlapping spatial clusters were detected for S. mansoni, T. trichiura, A. lumbricoides, and Taenia spp., which overlapped a large cluster of elevated HIV risk. Important place-based heterogeneities in infection risk exist in this community, and these GCEs are greater for the NTDs and HIV than for TB and malaria. Our findings suggest that broad-scale contextual drivers shape infectious disease risk in this population, but these effects operate at different grouping-levels for different pathogens. A general contextual analysis can provide a foundation for understanding the complex ecology of NTDs and contribute to the targeting of interventions.