Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 33(8): 1242-1257, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487647

RESUMEN

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Chaperonas Moleculares , Neoplasias , Biosíntesis de Proteínas , Humanos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/genética , Ribosomas/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Extensión de la Cadena Peptídica de Translación/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo
2.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629253

RESUMEN

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Asunto(s)
Mitocondrias , Iniciación de la Cadena Peptídica Traduccional , Animales , Humanos , Bacterias/genética , Mamíferos/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33414181

RESUMEN

During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through-inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell's protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/efectos de los fármacos , Oxadiazoles/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Aminoglicósidos/metabolismo , Animales , Artemia/genética , Codón sin Sentido/metabolismo , Codón de Terminación/efectos de los fármacos , Codón de Terminación/metabolismo , Fibrosis Quística/genética , Distrofia Muscular de Duchenne/genética , Oxadiazoles/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Saccharomyces/genética
4.
Nucleic Acids Res ; 47(4): 2002-2010, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496477

RESUMEN

Stress is known to induce retrograde tRNA translocation from the cytoplasm to the nucleus but translocation kinetics and tRNA-spatial distribution have not been characterized previously. We microinject fluorescently-labeled tRNA into living cells and use confocal microscopy to image tRNA spatial distribution in single cells at various levels of starvation and to determine translocation rate constants. Retrograde tRNA translocation occurs reversibly, within minutes after nutrition depletion of the extracellular medium. Such nutritional starvation leads to down-regulation of tRNA nuclear import and nearly complete curtailment of its nuclear export. Nuclear tRNA accumulation is suppressed in cells treated with the translation inhibitor puromycin, but is enhanced in cells treated with the microtubule inhibitor nocodazole. tRNA in the cytoplasm exhibits distinct spatial distribution inconsistent with diffusion, implying that such distribution is actively maintained. We propose that tRNA biological complexes and/or cytoplasmic electric fields are the likely regulators of cytoplasmic tRNA spatial distribution.


Asunto(s)
Transporte de ARN/genética , ARN de Transferencia/genética , Inanición/genética , Estrés Fisiológico/genética , Transporte Activo de Núcleo Celular/genética , Animales , Núcleo Celular/genética , Citoplasma/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Análisis de la Célula Individual
5.
Molecules ; 26(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802273

RESUMEN

The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.


Asunto(s)
Colorantes Fluorescentes/química , Sondas de Oligonucleótidos/química , ARN/química , Animales , Humanos , Procesamiento Proteico-Postraduccional , Coloración y Etiquetado
6.
Nucleic Acids Res ; 46(18): 9736-9748, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30011005

RESUMEN

Downstream stable mRNA secondary structures can stall elongating ribosomes by impeding the concerted movements of tRNAs and mRNA on the ribosome during translocation. The addition of a downstream mRNA structure, such as a stem-loop or a pseudoknot, is essential to induce -1 programmed ribosomal frameshifting (-1 PRF). Interestingly, previous studies revealed that -1 PRF efficiencies correlate with conformational plasticity of pseudoknots, defined as their propensity to form incompletely folded structures, rather than with the mechanical properties of pseudoknots. To elucidate the detailed molecular mechanisms of translocation and -1 PRF, we applied several smFRET assays to systematically examine how translocation rates and conformational dynamics of ribosomes were affected by different pseudoknots. Our results show that initial pseudoknot-unwinding significantly inhibits late-stage translocation and modulates conformational dynamics of ribosomal post-translocation complexes. The effects of pseudoknots on the structural dynamics of ribosomes strongly correlate with their abilities to induce -1 PRF. Our results lead us to propose a kinetic scheme for translocation which includes an initial power-stroke step and a following thermal-ratcheting step. This scheme provides mechanistic insights on how selective modulation of late-stage translocation by pseudoknots affects -1 PRF. Overall our findings advance current understanding of translocation and ribosome-induced mRNA structure unwinding.


Asunto(s)
Sistema de Lectura Ribosómico/fisiología , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , ARN/química , Ribosomas/metabolismo , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Cinética , Extensión de la Cadena Peptídica de Translación/fisiología , ARN/metabolismo , ARN Circular , ARN Mensajero/química , Imagen Individual de Molécula
7.
Nucleic Acids Res ; 46(16): 8651-8661, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30107527

RESUMEN

The GTPase elongation factor EF-Tu delivers aminoacyl-tRNAs to the mRNA-programmed ribosome during translation. Cognate codon-anticodon interaction stimulates GTP hydrolysis within EF-Tu. It has been proposed that EF-Tu undergoes a large conformational change subsequent to GTP hydrolysis, which results in the accommodation of aminoacyl-tRNA into the ribosomal A-site. However, this proposal has never been tested directly. Here, we apply single-molecule total internal reflection fluorescence microscopy to study the conformational dynamics of EF-Tu when bound to the ribosome. Our studies show that GTP hydrolysis initiates a partial, comparatively small conformational change of EF-Tu on the ribosome, not directly along the path from the solution 'GTP' to the 'GDP' structure. The final motion is completed either concomitant with or following dissociation of EF-Tu from the ribosome. The structural transition of EF-Tu on the ribosome is slower when aa-tRNA binds to a cognate versus a near-cognate codon. The resulting longer residence time of EF-Tu on the ribosome may be important for promoting accommodation of the cognate aminoacyl-tRNA into the A-site.


Asunto(s)
GTP Fosfohidrolasas/química , Factor Tu de Elongación Peptídica/química , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Anticodón/genética , Codón/genética , Escherichia coli/genética , GTP Fosfohidrolasas/genética , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hidrólisis , Cinética , Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas/genética , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/química , Ribosomas/química
8.
Nucleic Acids Res ; 46(16): 8641-8650, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30107565

RESUMEN

According to the traditional view, GTPases act as molecular switches, which cycle between distinct 'on' and 'off' conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex. GTP hydrolysis is thought to cause the release of EF-Tu from aminoacyl-tRNA and the ribosome due to a dramatic conformational change following Pi release. Here, the crystal structure of Escherichia coli EF-Tu in complex with a non-hydrolysable GTP analogue (GDPNP) has been determined. Remarkably, the overall conformation of EF-Tu·GDPNP displays the classical, open GDP-bound conformation. This is in accordance with an emerging view that the identity of the bound guanine nucleotide is not 'locking' the GTPase in a fixed conformation. Using a single-molecule approach, the conformational dynamics of various ligand-bound forms of EF-Tu were probed in solution by fluorescence resonance energy transfer. The results suggest that EF-Tu, free in solution, may sample a wider set of conformations than the structurally well-defined GTP- and GDP-forms known from previous X-ray crystallographic studies. Only upon binding, as a ternary complex, to the mRNA-programmed ribosome, is the well-known, closed GTP-bound conformation, observed.


Asunto(s)
Escherichia coli/química , Guanosina Trifosfato/química , Factor Tu de Elongación Peptídica/química , Conformación Proteica , Cristalografía por Rayos X , Escherichia coli/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Difosfato/química , Guanosina Trifosfato/análogos & derivados , Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química , Ribosomas/genética
9.
Mol Cell ; 42(3): 367-77, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549313

RESUMEN

We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G⋅GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA⋅EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Simulación de Dinámica Molecular , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Adenosina Trifosfato/metabolismo , Carbocianinas/química , Cinética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/genética
10.
Nucleic Acids Res ; 45(17): 10168-10177, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973468

RESUMEN

Bacterial ribosome recycling requires breakdown of the post-termination complex (PoTC), comprising a messenger RNA (mRNA) and an uncharged transfer RNA (tRNA) cognate to the terminal mRNA codon bound to the 70S ribosome. The translation factors, elongation factor G and ribosome recycling factor, are known to be required for recycling, but there is controversy concerning whether these factors act primarily to effect the release of mRNA and tRNA from the ribosome, with the splitting of the ribosome into subunits being somewhat dispensable, or whether their main function is to catalyze the splitting reaction, which necessarily precedes mRNA and tRNA release. Here, we utilize three assays directly measuring the rates of mRNA and tRNA release and of ribosome splitting in several model PoTCs. Our results largely reconcile these previously held views. We demonstrate that, in the absence of an upstream Shine-Dalgarno (SD) sequence, PoTC breakdown proceeds in the order: mRNA release followed by tRNA release and then by 70S splitting. By contrast, in the presence of an SD sequence all three processes proceed with identical apparent rates, with the splitting step likely being rate-determining. Our results are consistent with ribosome profiling results demonstrating the influence of upstream SD-like sequences on ribosome occupancy at or just before the mRNA stop codon.


Asunto(s)
Escherichia coli/genética , Modelos Biológicos , Ribosomas/metabolismo , Proteínas Bacterianas/metabolismo , Codón de Terminación , Escherichia coli/metabolismo , Polarización de Fluorescencia , Ácido Fusídico/farmacología , Guanosina Trifosfato/metabolismo , Cinética , Factor G de Elongación Peptídica/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Tioestreptona/farmacología , Viomicina/farmacología
11.
Nucleic Acids Res ; 45(2): 926-937, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27625389

RESUMEN

Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 µm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.


Asunto(s)
Bacterias/genética , ARN de Transferencia/metabolismo , ARN/metabolismo , Bacterias/metabolismo , Difusión , Escherichia coli/genética , Escherichia coli/metabolismo , Imagen Molecular , Biosíntesis de Proteínas , Transporte de ARN , ARN Bacteriano
12.
Proc Natl Acad Sci U S A ; 113(27): 7515-20, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27313204

RESUMEN

During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this energy is used mainly to drive movements of the tRNAs and mRNA or to foster EF-G dissociation from the ribosome after translocation has been a long-lasting debate. Free EF-G, not bound to the ribosome, adopts quite different structures in its GTP and GDP forms. Structures of EF-G on the ribosome have been visualized at various intermediate steps along the translocation pathway, using antibiotics and nonhydolyzable GTP analogs to block translocation and to prolong the dwell time of EF-G on the ribosome. However, the structural dynamics of EF-G bound to the ribosome have not yet been described during normal, uninhibited translocation. Here, we report the rotational motions of EF-G domains during normal translocation detected by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy. Our study shows that EF-G has a small (∼10°) global rotational motion relative to the ribosome after GTP hydrolysis that exerts a force to unlock the ribosome. This is followed by a larger rotation within domain III of EF-G before its dissociation from the ribosome.


Asunto(s)
Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Sistemas de Translocación de Proteínas
13.
Biophys J ; 113(11): 2326-2335, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29211986

RESUMEN

The pretranslocation complex of the ribosome can undergo spontaneous fluctuations of messenger RNA and transfer RNAs (tRNAs) between classical and hybrid states, and occupation of the hybrid tRNA positions has been proposed to precede translocation. The classical and hybrid state tRNA positions have been extensively characterized when the ribosome is stalled along the messenger RNA by either the absence or delayed addition of elongation factor G (EF-G), or by the presence of antibiotics or GTP analogs that block translocation. However, during multiple ongoing elongation cycles when both EF-G and ternary complexes are present, EF-G can bind to the pretranslocation complex much faster than the timescale of the classic-hybrid transitions. Using single-molecule fluorescence resonance energy transfer between adjacent tRNAs and between A-site tRNA and ribosomal protein L11, we found that the tRNAs do not fluctuate between the hybrid and classical states, but instead adopt a position with fluorescence resonance energy transfer efficiencies between those of the stalled classical and hybrid states.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/genética , Ribosomas/genética , Ribosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo
14.
Nucleic Acids Res ; 43(19): 9519-28, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26338772

RESUMEN

The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.


Asunto(s)
Guanosina Difosfato/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo
15.
Nano Lett ; 16(1): 138-44, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26609994

RESUMEN

It has been hypothesized that the ribosome gains additional fidelity during protein translation by probing structural differences in tRNA species. We measure the translocation kinetics of different tRNA species through ∼3 nm diameter synthetic nanopores. Each tRNA species varies in the time scale with which it is deformed from equilibrium, as in the translocation step of protein translation. Using machine-learning algorithms, we can differentiate among five tRNA species, analyze the ratios of tRNA binary mixtures, and distinguish tRNA isoacceptors.


Asunto(s)
Nanoporos , Biosíntesis de Proteínas , ARN de Transferencia/química , Sitios de Unión , Electroforesis , Cinética , Aprendizaje Automático , ARN de Transferencia/genética , Ribosomas/química , Ribosomas/genética
16.
Molecules ; 22(9)2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28850078

RESUMEN

Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.


Asunto(s)
Nucleótidos/genética , Ribosomas/genética , Emparejamiento Base , Código Genético , Cinética , Modelos Moleculares , ARN Mensajero/genética , ARN de Transferencia/genética
17.
J Am Chem Soc ; 138(9): 3136-44, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26878192

RESUMEN

Over half of all antibiotics target the bacterial ribosome-nature's complex, 2.5 MDa nanomachine responsible for decoding mRNA and synthesizing proteins. Macrolide antibiotics, exemplified by erythromycin, bind the 50S subunit with nM affinity and inhibit protein synthesis by blocking the passage of nascent oligopeptides. Solithromycin (1), a third-generation semisynthetic macrolide discovered by combinatorial copper-catalyzed click chemistry, was synthesized in situ by incubating either E. coli 70S ribosomes or 50S subunits with macrolide-functionalized azide 2 and 3-ethynylaniline (3) precursors. The ribosome-templated in situ click method was expanded from a binary reaction (i.e., one azide and one alkyne) to a six-component reaction (i.e., azide 2 and five alkynes) and ultimately to a 16-component reaction (i.e., azide 2 and 15 alkynes). The extent of triazole formation correlated with ribosome affinity for the anti (1,4)-regioisomers as revealed by measured Kd values. Computational analysis using the site-identification by ligand competitive saturation (SILCS) approach indicated that the relative affinity of the ligands was associated with the alteration of macrolactone+desosamine-ribosome interactions caused by the different alkynes. Protein synthesis inhibition experiments confirmed the mechanism of action. Evaluation of the minimal inhibitory concentrations (MIC) quantified the potency of the in situ click products and demonstrated the efficacy of this method in the triaging and prioritization of potent antibiotics that target the bacterial ribosome. Cell viability assays in human fibroblasts confirmed 2 and four analogues with therapeutic indices for bactericidal activity over in vitro mammalian cytotoxicity as essentially identical to solithromycin (1).


Asunto(s)
Alquinos/química , Antibacterianos/síntesis química , Azidas/química , Macrólidos/síntesis química , Ribosomas/química , Triazoles/síntesis química , Alquinos/farmacología , Antibacterianos/farmacología , Azidas/farmacología , Química Clic , Reacción de Cicloadición , Humanos , Macrólidos/farmacología , Modelos Moleculares , Ribosomas/metabolismo , Termodinámica , Triazoles/farmacología
18.
Nucleic Acids Res ; 41(18): e177, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23965304

RESUMEN

The current report represents a further advancement of our previously reported technology termed Fluorescent transfer RNA (tRNA) for Translation Monitoring (FtTM), for monitoring of active global protein synthesis sites in single live cells. FtTM measures Förster resonance energy transfer (FRET) signals, generated when fluorescent tRNAs (fl-tRNAs), separately labeled as a FRET pair, occupy adjacent sites on the ribosome. The current technology, termed DiCodon Monitoring of Protein Synthesis (DiCoMPS), was developed for monitoring active synthesis of a specific protein. In DiCoMPS, specific fl-tRNA pair combinations are selected for transfection, based on the degree of enrichment of a dicodon sequence to which they bind in the mRNA of interest, relative to the background transcriptome of the cell in which the assay is performed. In this study, we used cells infected with the Epizootic Hemorrhagic Disease Virus 2-Ibaraki and measured, through DiCoMPS, the synthesis of the viral non-structural protein 3 (NS3), which is enriched in the AUA:AUA dicodon. fl-tRNA(Ile)UAU-generated FRET signals were specifically enhanced in infected cells, increased in the course of infection and were diminished on siRNA-mediated knockdown of NS3. Our results establish an experimental approach for the single-cell measurement of the levels of synthesis of a specific viral protein.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Biosíntesis de Proteínas , Proteínas Virales/biosíntesis , Animales , Células CHO , Células Cultivadas , Codón , Cricetinae , Cricetulus , Virus de la Enfermedad Hemorrágica Epizoótica , Interferencia de ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Análisis de la Célula Individual , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/genética
19.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24676899

RESUMEN

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Asunto(s)
Colágeno/biosíntesis , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Microscopía Confocal , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Prolina/metabolismo , Animales , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patología , Fibrosis , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Prolina/genética , Transfección
20.
Nucleic Acids Res ; 40(12): e88, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22422844

RESUMEN

We present a flexible, real-time-coupled transcription-translation assay that involves the continuous monitoring of fluorescent Emerald GFP formation. Along with numerical simulation of a reaction kinetics model, the assay permits quantitative estimation of the effects on full-length protein synthesis of various additions, subtractions or substitutions to the protein synthesis machinery. Since the assay uses continuous fluorescence monitoring, it is much simpler and more rapid than other assays of protein synthesis and is compatible with high-throughput formats. Straightforward alterations of the assay permit determination of (i) the fraction of ribosomes in a cell-free protein synthesis kit that is active in full-length protein synthesis and (ii) the relative activities in supporting protein synthesis of modified (e.g. mutated, fluorescent-labeled) exogenous components (ribosomes, amino acid-specific tRNAs) that replace the corresponding endogenous components. Ribosomes containing fluorescent-labeled L11 and tRNAs labeled with fluorophores in the D-loop retain substantial activity. In the latter case, the extent of activity loss correlates with a combination of steric bulk and hydrophobicity of the fluorophore.


Asunto(s)
Fluorometría/métodos , Biosíntesis de Proteínas , Sistema Libre de Células , Proteínas Fluorescentes Verdes/biosíntesis , Sustancias Luminiscentes/análisis , Fenilalanina/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Ribosomas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA