Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 40(17): e105603, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254352

RESUMEN

Variants identified in genome-wide association studies have implicated immune pathways in the development of Alzheimer's disease (AD). Here, we investigated the mechanistic basis for protection from AD associated with PLCγ2 R522, a rare coding variant of the PLCG2 gene. We studied the variant's role in macrophages and microglia of newly generated PLCG2-R522-expressing human induced pluripotent cell lines (hiPSC) and knockin mice, which exhibit normal endogenous PLCG2 expression. In all models, cells expressing the R522 mutation show a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This manifests as enhanced release of cellular calcium ion stores in response to physiologically relevant stimuli like Fc-receptor ligation or exposure to Aß oligomers. Expression of the PLCγ2-R522 variant resulted in increased stimulus-dependent PIP2 depletion and reduced basal PIP2 levels in vivo. Furthermore, it was associated with impaired phagocytosis and enhanced endocytosis. PLCγ2 acts downstream of other AD-related factors, such as TREM2 and CSF1R, and alterations in its activity directly impact cell function. The inherent druggability of enzymes such as PLCγ2 raises the prospect of PLCγ2 manipulation as a future therapeutic approach in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Endocitosis , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinasa C/genética , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Células Cultivadas , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Neuroglía/metabolismo , Proteína Quinasa C/metabolismo
2.
Glia ; 71(6): 1522-1535, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36825534

RESUMEN

Genome wide association studies (GWAS) have highlighted the importance of the complement cascade in pathogenesis of Alzheimer's disease (AD). Complement receptor 1 (CR1; CD35) is among the top GWAS hits. The long variant of CR1 is associated with increased risk for AD; however, roles of CR1 in brain health and disease are poorly understood. A critical confounder is that brain expression of CR1 is controversial; failure to demonstrate brain expression has provoked the suggestion that peripherally expressed CR1 influences AD risk. We took a multi-pronged approach to establish whether CR1 is expressed in brain. Expression of CR1 at the protein and mRNA level was assessed in human microglial lines, induced pluripotent stem cell (iPSC)-derived microglia from two sources and brain tissue from AD and control donors. CR1 protein was detected in microglial lines and iPSC-derived microglia expressing different CR1 variants when immunostained with a validated panel of CR1-specific antibodies; cell extracts were positive for CR1 protein and mRNA. CR1 protein was detected in control and AD brains, co-localizing with astrocytes and microglia, and expression was significantly increased in AD compared to controls. CR1 mRNA expression was detected in all AD and control brain samples tested; expression was significantly increased in AD. The data unequivocally demonstrate that the CR1 transcript and protein are expressed in human microglia ex vivo and on microglia and astrocytes in situ in the human brain; the findings support the hypothesis that CR1 variants affect AD risk by directly impacting glial functions.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Microglía/metabolismo
3.
Am J Physiol Cell Physiol ; 310(7): C520-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26718628

RESUMEN

Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Medios de Cultivo/química , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Western Blotting , Ciclo Celular/fisiología , Línea Celular , Técnicas de Cocultivo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Electrónica de Rastreo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-A/metabolismo
4.
J Physiol ; 594(22): 6583-6594, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27616476

RESUMEN

Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABAA receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process - from pre-patterned neural progenitor to active neuron - takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Receptores de GABA-A/metabolismo , Animales , Humanos , Neurogénesis/fisiología
5.
Front Cell Dev Biol ; 9: 647981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277599

RESUMEN

In development, differentiation from a pluripotent state results in global epigenetic changes, although the extent to which this occurs in induced pluripotent stem cell-based neuronal models has not been extensively characterized. In the present study, induced pluripotent stem cell colonies (33Qn1 line) were differentiated and collected at four time-points, with DNA methylation assessed using the Illumina Infinium Human Methylation EPIC BeadChip array. Dynamic changes in DNA methylation occurring during differentiation were investigated using a data-driven trajectory inference method. We identified a large number of Bonferroni-significant loci that showed progressive alterations in DNA methylation during neuronal differentiation. A gene-gene interaction network analysis identified 60 densely connected genes that were influential in the differentiation of neurons, with STAT3 being the gene with the highest connectivity.

6.
Mol Brain ; 14(1): 98, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174924

RESUMEN

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Asunto(s)
Relojes Biológicos/genética , Encéfalo/embriología , Senescencia Celular , Epigénesis Genética , Feto/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Neuronas/citología , Senescencia Celular/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Embarazo , Reproducibilidad de los Resultados
7.
Chronobiol Int ; 27(4): 842-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20560714

RESUMEN

Sleep disturbances are a common problem among institutionalized older people. Studies have shown that this population experiences prolonged sleep latency, increased fragmentation and wake after sleep onset, more disturbed circadian rhythms, and night-day reversal. However, studies have not examined the extent to which this is because of individual factors known to influence sleep (such as age) or because of the institutional environment. This article compares actigraphic data collected for 14 days from 122 non-demented institutional care residents (across ten care facilities) with 52 community dwelling poor sleepers >65 yrs of age. Four dependent variables were analyzed: (i) "interdaily stability" (IS); (ii) "intradaily variability" (IV); (iii) relative amplitude (RA) of the activity rhythm; and (iv) mean 24 h activity level. Data were analyzed using a fixed-effect, single-level model (using MLwiN). This model enables comparisons between community and institutional care groups to be made while conditioning out possible "individual" effects of "age," "sex," "level of dependency," "level of incontinence care," and "number of regular daily/prescribed medications." After controlling for the effects of a range of individual level factors, and after controlling for unequal variance across groups (heteroscedascity), there was little difference between community dwelling older adults and institutional care residents in IS score, suggesting that the stability of day-to-day patterns (such as bed get-up, lunch times, etc.) is similar within these two resident groups. However, institutional care residents experienced more fragmented rest/wake patterns (having significantly higher IV scores and significantly lower mean activity values). Our findings strongly suggest that the institutional care environment itself has a negative association with older people's rest/wake patterns; although, longitudinal studies are required to fully understand any causal relationships.


Asunto(s)
Actigrafía/métodos , Ritmo Circadiano/fisiología , Demencia/fisiopatología , Servicios de Atención de Salud a Domicilio , Hogares para Ancianos , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA