Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mater Des ; 2332023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37854951

RESUMEN

Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.

2.
J Hered ; 111(5): 471-485, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32803261

RESUMEN

Deep-sea habitats may drive unique dispersal and demographic patterns for fishes, but population genetic analyses to address these questions have rarely been conducted for fishes in these environments. This study investigates the population structure of 3 tropical deepwater snappers of the genus Etelis that reside at 100-400 m depth, with broad and overlapping distributions in the Indo-Pacific. Previous studies showed little population structure within the Hawaiian Archipelago for 2 of these species: Etelis coruscans and E. carbunculus. Here we extend sampling to the entire geographic range of each species to resolve the population genetic architecture for these 2 species, as well as a recently exposed cryptic species (Etelis sp.). One goal was to determine whether deepwater snappers are more dispersive than shallow-water fishes. A second goal was to determine whether submesophotic fishes have older, more stable populations than shallow reef denizens that are subject to glacial sea-level fluctuations. Both goals are pertinent to the management of these valuable food fishes. A total of 1153 specimens of E. coruscans from 15 geographic regions were analyzed, along with 1064 specimens of E. carbunculus from 11 regions, and 590 specimens of E. sp. from 16 regions. The first 2 species were analyzed with mtDNA and 9-11 microsatellite loci, while E. sp. was analyzed with mtDNA only. Etelis coruscans had a non-significant microsatellite global FST, but significant global mtDNA Ф ST = 0.010 (P = 0.0007), with the isolation of Seychelles in the western Indian Ocean, and intermittent signals of isolation for the Hawaiian Archipelago. Etelis carbunculus had a non-significant microsatellite global FST, and significant global mtDNA Ф ST = 0.021 (P = 0.0001), with low but significant levels of isolation for Hawai'i, and divergence between Tonga and Fiji. Etelis sp. had mtDNA Ф ST = 0.018 (P = 0.0005), with a strong pattern of isolation for both Seychelles and Tonga. Overall, we observed low population structure, shallow mtDNA coalescence (similar to near-shore species), and isolation at the fringes of the Indo-Pacific basin in Hawai'i and the western Indian Ocean. While most shallow-water species have population structure on the scale of biogeographic provinces, deepwater snapper populations are structured on the wider scale of ocean basins, more similar to pelagic fishes than to shallow-water species. This population structure indicates the capacity for widespread dispersal throughout the Indo-Pacific region.


Asunto(s)
Peces/clasificación , Peces/genética , Genética de Población , Animales , ADN Mitocondrial , Técnicas de Genotipaje , Océano Índico , Repeticiones de Microsatélite , Océano Pacífico , Variantes Farmacogenómicas , Filogenia
3.
J Hered ; 111(1): 70-83, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943081

RESUMEN

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Asunto(s)
Especiación Genética , Filogeografía , Animales , Regiones Antárticas , Organismos Acuáticos , Peces , Agua Dulce , Hawaii , Invertebrados , Plantas
4.
Mol Phylogenet Evol ; 100: 361-371, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27083863

RESUMEN

Evolutionary genetic patterns in shallow coastal fishes are documented with dozens of studies, but corresponding surveys of deepwater fishes (>200m) are scarce. Here we investigate the evolutionary history of deepwater snappers (genus Etelis), comprised of three recognized Indo-Pacific species and one Atlantic congener, by constructing a phylogeny of the genus with two mtDNA loci and two nuclear introns. Further, we apply range-wide Indo-Pacific sampling to test for the presence and distribution of a putative cryptic species pair within E. carbunculus using morphological analyses and mtDNA cytochrome b sequences from 14 locations across the species range (N=1696). These analyses indicate that E. carbunculus is comprised of two distinct, non-interbreeding lineages separated by deep divergence (d=0.081 in cytochrome b). Although these species are morphologically similar, we identified qualitative differences in coloration of the upper-caudal fin tip and the shape of the opercular spine, as well as significant differences in adult body length, body depth, and head length. These two species have overlapping Indo-Pacific distributions, but one species is more widespread across the Indo-Pacific, whereas the other species is documented in the Indian Ocean and Western Central Pacific. The dated Etelis phylogeny places the cryptic species divergence in the Pliocene, indicating that the biogeographic barrier between the Indian and Pacific Oceans played a role in speciation. Based on historic taxonomy and nomenclature, the species more widespread in the Pacific Ocean is E. carbunculus, and the other species is previously undescribed (referred to here as E. sp.). The Atlantic congener E. oculatus has only recently (∼0.5Ma) diverged from E. coruscans in the Indo-Pacific, indicating colonization via southern Africa. The pattern of divergence at the Indo-Pacific barrier, and Pleistocene colonization from the Indian Ocean into the Atlantic, is concordant with patterns observed in shallow coastal fishes, indicating similar drivers of evolutionary processes.


Asunto(s)
Peces/genética , África Austral , Distribución Animal , Animales , Océano Atlántico , Citocromos b/genética , ADN Mitocondrial/genética , Evolución Molecular , Proteínas de Peces/genética , Peces/anatomía & histología , Peces/clasificación , Especiación Genética , Océano Índico , Océano Pacífico , Filogenia , Filogeografía , Análisis de Secuencia de ADN
6.
Tissue Eng Part A ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38126301

RESUMEN

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.

7.
Sci Rep ; 13(1): 15810, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737242

RESUMEN

The Gila robusta species complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia, and G. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robusta N = 266, G. intermedia N = 241, and G. nigra N = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FST ranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirm Gila robusta as a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.


Asunto(s)
Cyprinidae , Cipriniformes , Animales , Filogenia , Programas Informáticos , Genómica
8.
Acta Biomater ; 153: 573-584, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130660

RESUMEN

Graphene-based three-dimensional (3D) porous scaffolds have been extensively investigated in the photothermal treatment of tumor-induced bone defects due to their photothermal and osteogenic capacity. However, scaffold processing destroys conjugated graphene structure and reduces its photothermal conversion efficiency. In this study, a graphene-based 3D scaffold (GS) with intact conjugated structure was prepared by chemical vapor deposition (CVD). GS was rapidly mineralized biomimetically by a newly developed semi-dry electrochemical deposition method to form a hydroxyapatite (HA) incorporated graphene scaffold (HA-GS). The simulation of the charged particle dynamics provides a better understanding of the mechanism of semi-dry electrodeposition. This scaffold exhibits high photothermal sensitivity that generates sufficient thermal energy for photothermal therapy even under near-infrared irradiation (980 nm) with extremely low power density (0.2 W/cm2). Moreover, osteogenic activity was improved by HA-GS compared with GS. Compared with the blank GS, the HA-GS scaffold deposited with HA also showed regulation of macrophage-derived chemokine (MDC) and remodeled the immune microenvironment of the wound after photothermal therapy. In vivo experiments further verified that HA-GS can ablate osteosarcoma through a photothermal effect. These results suggest that the as-prepared HA-GS may be adopted as a promising multifunctional bone scaffold against tumor-induced bone defect. STATEMENT OF SIGNIFICANCE: The hydroxyapatite (HA) incorporated graphene scaffold (HA-GS) scaffold was prepared by semi-dry electrodeposition first time. The prepared HA-GS has a high photothermal conversion efficiency (it can rise to 48 °C under the 5 min irradiation of 980 nm near-infrared laser at 0.2 W/cm2). The mineralized layer prepared by semi-dry electrodeposition is not only osteoinductive, but also reduces the inflammatory response after photothermal therapy. This modulates the immune microenvironment at the bone tumor invasion site, thereby promoting defect repair.


Asunto(s)
Neoplasias Óseas , Grafito , Humanos , Porosidad , Andamios del Tejido/química , Grafito/química , Regeneración Ósea , Galvanoplastia , Durapatita/farmacología , Osteogénesis , Neoplasias Óseas/terapia , Ingeniería de Tejidos/métodos , Microambiente Tumoral
9.
Tissue Eng Part A ; 27(15-16): 1044-1054, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33045930

RESUMEN

Stem cell-derived extracellular vesicles (EVs) have shown great promise in the field of regenerative medicine and tissue engineering. Recently, human bone marrow-derived mesenchymal stem cell (BMSC)-derived EVs have been considered for bone tissue engineering applications. In this study, we evaluated the osteogenic capability of placental stem cell (PSC)-derived EVs and compared them to the well-characterized BMSC-derived EVs. EVs were extracted from three designated time points (0, 7, and 21 days) after osteogenic differentiation. The results showed that the PSC-derived EVs had much higher protein and lipid concentrations than EVs derived from BMSCs. The extracted EVs were characterized by observing their morphology and size distribution before utilizing next-generation sequencing to determine their microRNA (miRNA) profiles. A total of 306 miRNAs within the EVs were identified, of which 64 were significantly expressed in PSC-derived EVs that related to osteogenic differentiation. In vitro osteogenic differentiation study indicated the late-stage (21-day extracted)-derived EVs higher osteogenic enhancing capability when compared with the early stage-derived EVs. We demonstrated that EVs derived from PSCs could be a new source of EVs for bone tissue engineering applications.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Diferenciación Celular , Femenino , Humanos , MicroARNs/genética , Placenta , Embarazo
10.
Biofabrication ; 12(2): 022003, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31972558

RESUMEN

Extrusion-based bioprinting is one of the leading manufacturing techniques for tissue engineering and regenerative medicine. Its primary limitation is the lack of materials, known as bioinks, which are suitable for the bioprinting process. The degree to which a bioink is suitable for bioprinting has been described as its 'printability.' However, a lack of clarity surrounding the methodologies used to evaluate a bioink's printability, as well as the usage of the term itself, have hindered the field. This article presents a review of measures used to assess the printability of extrusion-based bioinks in an attempt to assist researchers during the bioink development process. Many different aspects of printability exist and many different measurements have been proposed as a consequence. Researchers often do not evaluate a new bioink's printability at all, while others simply do so qualitatively. Several quantitative measures have been presented for the extrudability, shape fidelity, and printing accuracy of bioinks. Different measures have been developed even within these aspects, each testing the bioink in a slightly different way. Additionally, other relevant measures which had little or no examples of quantifiable methods are also to be considered. Looking forward, further work is needed to improve upon current assessment methodologies, to move towards a more comprehensive view of printability, and to standardize these printability measurements between researchers. Better assessment techniques will naturally lead to a better understanding of the underlying mechanisms which affect printability and better comparisons between bioinks. This in turn will help improve upon the bioink development process and the bioinks available for use in bioprinting.


Asunto(s)
Bioimpresión/instrumentación , Impresión Tridimensional/instrumentación , Animales , Bioimpresión/métodos , Humanos , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química
11.
Biofabrication ; 12(3): 035029, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428889

RESUMEN

The goal of this study was to use 3D bioprinting technology to create a bioengineered dental construct containing human dental pulp stem cells (hDPSCs). To accomplish this, we first developed a novel bone morphogenetic protein (BMP) peptide-tethering bioink formulation and examined its rheological properties, its printability, and the structural stability of the bioprinted construct. Second, we evaluated the survival and differentiation of hDPSCs in the bioprinted dental construct by measuring cell viability, proliferation, and gene expression, as well as histological and immunofluorescent analyses. Our results showed that the peptide conjugation into the gelatin methacrylate-based bioink formulation was successfully performed. We determined that greater than 50% of the peptides remained in the bioprinted construct after three weeks in vitro cell culture. Human DPSC viability was >90% in the bioprinted constructs immediately after the printing process. Alizarin Red staining showed that the BMP peptide construct group exhibited the highest calcification as compared to the growth medium, osteogenic medium, and non-BMP peptide construct groups. In addition, immunofluorescent and quantitative reverse transcription-polymerase chain reaction analyses showed robust expression of dentin sialophosphoprotein and osteocalcin in the BMP peptide dental constructs. Together, these results strongly suggested that BMP peptide-tethering bioink could accelerate the differentiation of hDPSCs in 3D bioprinted dental constructs.


Asunto(s)
Materiales Biomiméticos/farmacología , Bioimpresión , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Pulpa Dental/citología , Osteogénesis , Impresión Tridimensional , Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos/química , Osteogénesis/efectos de los fármacos , Péptidos/farmacología , Células Madre/efectos de los fármacos , Porcinos , Andamios del Tejido/química
12.
Zookeys ; 835: 125-137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31043851

RESUMEN

A new species of the butterflyfish genus Prognathodes (Chaetodontidae) is described from two specimens collected at a depth of 116 m off Ngemelis Island, Palau. Prognathodesgeminus sp. n. is similar to P.basabei Pyle & Kosaki, 2016 from the Hawaiian archipelago, and P.guezei (Maugé & Bauchot, 1976) from the western Indian Ocean, but differs from these species in the number of soft dorsal-fin rays, size of head, body width, and body depth. There are also subtle differences in life color, and substantial differences in the mtDNA cytochrome oxidase I sequence (d ≈ 0.08). Although genetic comparisons with P.guezei are unavailable, it is expected that the genetic divergence between P.guezei and P.geminus will be even greater than that between P.geminus and P.basabei. It is named for the strikingly similar color pattern it shares with P.basabei.

13.
Zookeys ; 835: 1-15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31043847

RESUMEN

Three new species of Chromis (Perciformes, Pomacentridae) from the Philippines, collected between 75-150 m depth, are described by a combination of morphological features and their coloration. Chromisgunting sp. n. was found in Batangas and Oriental Mindoro, and differs from its congeners in body depth (2.1-2.2 in SL), and color of adults, light brown, with a silver area on the anterior end and a bilateral black margin along the exterior side of the tail. It is most similar to C.scotochiloptera, with a 5.3% genetic divergence in COI. Chromishangganan sp. n. was found around Lubang Island. Body depth (1.9-2.0 in SL) and adult coloration (yellowish with dark black outer margins on dorsal and anal fins) also separate this species from its congeners. It is most similar to C.pembae, with a 2.5% genetic divergence. Chromisbowesi sp. n. was found in Batangas, and also differs from its congeners by the combination of body depth (1.5-1.6 in SL), and color of adults (brownish grey in the dorsal side to whitish on the ventral side, with alternating dark and light stripes in the sides of body). It is most similar to C.earina, with a 3.6% genetic divergence in COI.

14.
Zookeys ; (786): 139-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310352

RESUMEN

The new species Tosanoidesannepatrice sp. n. is described from four specimens collected at depths of 115-148 m near Palau and Pohnpei in Micronesia. It differs from the other three species of this genus in life color and in certain morphological characters, such as body depth, snout length, anterior three dorsal-fin spine lengths, caudal-fin length, and other characters. There are also genetic differences from the other four species of Tosanoides (d ≈ 0.04-0.12 in mtDNA cytochrome oxidase I). This species is presently known only from Palau and Pohnpei within Micronesia, but it likely occurs elsewhere throughout the tropical western Pacific.

15.
PeerJ ; 6: e5605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294509

RESUMEN

The Gila robusta species complex in the Lower Colorado River Basin has a complicated taxonomic history. Recent authors have separated this group into three nominal taxa, G. robusta, G. intermedia, and G. nigra, however aside from location, no reliable method of distinguishing individuals of these species currently exists. To assess relationships within this group, we examined morphology of type specimens and fresh material, and used RADseq methods to assess phylogenetic relationship among these nominal species. Maximum likelihood and Bayesian inference tree building methods reveal high concordance between tree topologies based on the mitochondrial and nuclear datasets. Coalescent SNAPP analysis resolved a similar tree topology. Neither morphological nor molecular data reveal diagnostic differences between these species as currently defined. As such, G. intermedia and G. nigra should be considered synonyms of the senior G. robusta. We hypothesize that climate driven wet and dry cycles have led to periodic isolation of population subunits and subsequent local divergence followed by reestablished connectivity and mixing. Management plans should therefore focus on retaining genetic variability and viability of geographic populations to preserve adaptability to changing climate conditions.

16.
PeerJ ; 6: e4650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29707432

RESUMEN

Mesophotic coral ecosystems (MCEs) continue to be understudied, especially in island locations spread across the Indo-Pacific Ocean. Pohnpei is the largest island in the Federated States of Micronesia, with a well-developed barrier reef, and steep slopes that descend to more than 1,000 m. Here we conducted visual surveys along a depth gradient of 0 to 60 m in addition to video surveys that extend to 130 m, with 72 belt transects and 12 roving surveys using closed-circuit rebreathers, to test for changes in reef fish composition from shallow to mesophotic depths. We observed 304 fish species across 47 families with the majority confined to shallow habitat. Taxonomic and trophic positions at 30 m showed similar compositions when compared against all other depths. However, assemblages were comprised of a distinct shallow (<30 m) and deep (>30 m) group, suggesting 30 m as a transition zone between these communities. Shallow specialists had a high probability of being herbivores and deep specialists had a higher probability of being planktivores. Acanthuridae (surgeonfishes), Holocentridae (soldierfishes), and Labridae (wrasses) were associated primarily with shallow habitat, while Pomacentridae (damselfishes) and Serranidae (groupers) were associated with deep habitat. Four species may indicate Central Pacific mesophotic habitat: Chromis circumaurea, Luzonichthys seaver, Odontanthias borbonius, and an undescribed slopefish (Symphysanodon sp.). This study supports the 30 m depth profile as a transition zone between shallow and mesophotic ecosystems (consistent with accepted definitions of MCEs), with evidence of multiple transition zones below 30 m. Disturbances restricted to either region are not likely to immediately impact the other and both ecosystems should be considered separately in management of reefs near human population centers.

17.
Bioprinting ; 102018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30911695

RESUMEN

Skin injury to the face remains one of the greatest challenges in wound care due to the varied contours and complex movement of the face. Current treatment strategies for extensive facial burns are limited to the use of autografts, allografts, and skin substitutes, and these often result in scarring, infection, and graft failure. Development of an effective treatment modality will greatly improve the quality of life and social integration of the affected individuals. In this proof of concept study, we developed a novel strategy, called "BioMask", which is a customized bioengineered skin substitute combined with a wound dressing layer that snugly fits onto the facial wounds. To achieve this goal, three-dimensional (3D) bioprinting principle was used to fabricate the BioMask that could be customized by patients' clinical images such as computed tomography (CT) data. Based on a face CT image, a wound dressing material and cell-laden hydrogels were precisely dispensed and placed in a layer-by-layer fashion by the control of air pressure and 3-axis stage. The resulted miniature BioMask consisted of three layers; a porous polyurethane (PU) layer, a keratinocyte-laden hydrogel layer, and a fibroblast-laden hydrogel layer. To validate this novel concept, the bioprinted BioMask was applied to a skin wound on a pre-fabricated face-shaped structure in mice. Through this in vivo study using the 3D BioMask, skin contraction and histological examination showed the regeneration of skin tissue, consisting of epidermis and dermis layers, on the complex facial wounds. Consequently, effective and rapid restoration of aesthetic and functional facial skin would be a significant improvement to the current issues a facial wound patient experience.

18.
Biofabrication ; 10(3): 034106, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29923501

RESUMEN

Three-dimensional bioprinting has emerged as a promising technique in tissue engineering applications through the precise deposition of cells and biomaterials in a layer-by-layer fashion. However, the limited availability of hydrogel bioinks is frequently cited as a major issue for the advancement of cell-based extrusion bioprinting technologies. It is well known that highly viscous materials maintain their structure better, but also have decreased cell viability due to the higher forces which are required for extrusion. However, little is known about the effect of the two distinct components of dynamic modulus of viscoelastic materials, storage modulus (G') and loss modulus (G″), on the printability of hydrogel-based bioinks. Additionally, 'printability' has been poorly defined in the literature, mostly consisting of gross qualitative measures which do not allow for direct comparison of bioinks. This study developed a framework for evaluating printability and investigated the effect of dynamic modulus, including storage modulus (G'), loss modulus (G″), and loss tangent (G″/G') on the printing outcome. Gelatin and alginate as model hydrogels were mixed at various concentrations to obtain hydrogel formulations with a wide range of storage and loss moduli. These formulations were then evaluated for the quantitatively defined values of extrudability, extrusion uniformity, and structural integrity. For extrudability, increasing either the loss or storage modulus increased the pressure required to extrude the bioink. A mathematical model relating the G' and G″ to the required extrusion pressure was derived based on the data. A lower loss tangent was correlated with increased structural integrity while a higher loss tangent correlated with increased extrusion uniformity. Gelatin-alginate composite hydrogels with a loss tangent in the range of 0.25-0.45 exhibited an excellent compromise between structural integrity and extrusion uniformity. In addition to the characterization of a common bioink, the methodology introduced in this paper could also be used to evaluate the printability of other bioinks in the future.


Asunto(s)
Alginatos/química , Bioimpresión/métodos , Gelatina/química , Ensayo de Materiales/métodos , Elasticidad , Reología , Ingeniería de Tejidos , Viscosidad
19.
Biodivers Data J ; (3): e4902, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25941454

RESUMEN

Luzonichthysseaver, n. sp., is described from two specimens, 42-46 mm standard length (SL) collected from Pohnpei, Micronesia. Collections were made by divers on mixed-gas closed-circuit rebreathers using hand nets at depths of 90-100 m. Luzonichthysseaver is distinct from all other species of the genus in the characters of lateral line scales, gill rakers, pelvic fin length, caudal concavity and coloration. Of the six species of Luzonichthys, it appears to be morphologically most similar to L.earlei and L.whitleyi.

20.
Biodivers Data J ; (3): e4180, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698898

RESUMEN

Neoniphonpencei, n. sp., is described from thirteen specimens, 132-197 mm standard length (SL) collected from mesophotic coral ecosystems (MCEs) at Rarotonga, Cook Islands by divers using mixed-gas closed-circuit rebreathers. It differs from all other species of the genus in number of lateral line scales, scales above and below lateral line, elements of life color, and in COI and cytochrome b DNA sequences. Of the five other known species of Neoniphon, it is most similar to the Indo-Pacific N.aurolineatus and the western Atlantic N.marianus both morphologically and genetically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA