Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 19(28): 9381-7, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23728964

RESUMEN

Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper-cross-linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper-cross-linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g(-1). HGTS was easily metalated with Pd(II) and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd(0)/HGTS nanocomposites. The metal nanoparticles had diameters in the 1-6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90% of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support.

2.
Chemistry ; 18(15): 4706-13, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22415869

RESUMEN

Two hypercross-linked resins stemming from a gel-type poly-chloromethylated styrene-divinylbenzene resin (GT) in beaded form are investigated with a combination of spectroscopic techniques (EPR and time-domain (TD)-NMR spectroscopy) to evaluate their use as supports for the development of operationally flexible heterogeneous metal catalysts, suitable to be employed in liquid and gas phase. The first resin (HGT) is the direct product of the hypercross-linking reaction, whereas the second one (HGS) is the sulphonated analogue of HGT obtained by exchanging approximately 3 wt % of the chloromethyl groups with sulphonic groups. HGT and HGS absorb both polar and apolar solvents in the permanent nanoporosity created by the hypercross-linking, and NMR data highlight that the pore size is not affected by the different properties of the investigated liquid media. The EPR analysis of the dry resins reveals that during the hypercross-linking process paramagnetic species are formed in the HGT beads, which persist in the sulphonated resin. The mobility of solutes inside the polymers framework was investigated with EPR spectroscopy upon soaking the resins with solutions of two spin probes (2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL)) in THF, toluene, n-heptane and water. The EPR spectra show that, depending on the solvent, the two resins can act as sorbents, able to trap the solutes in the polymer framework, or as simple supports that allow free diffusion of the solutes. Our results suggest that HGT and HGS are promising supporting materials for metal catalysts, provided one chooses carefully the solvent to be employed for the catalysed reaction as this choice strongly affects the mobility of the substrates and, thus their effective reactivity.

3.
Chemistry ; 18(21): 6632-43, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22461082

RESUMEN

The polymer framework of water-swollen copolymers of N,N-dimethylacrylamide, acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate (nominal cross-linking degrees of 4, 8, and 20 mol %) is composed of highly expanded domains, with "pores" not less than 6 nm in diameter. When the 4% cross-linked copolymer (DAE 26-4) is swollen with a 10(-4) M solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) in water, MeOH, EtOH, or nBuOH, the molecules of the paramagnetic probe rotate rapidly (τ<1000 ps) and as fast as in the bulk liquid in the case of water. The swelling degree of DAE 26-4 is related to the Hansen solubility parameters of a number of liquids, including linear alcohols up to n-octanol. It is also found that the rotational correlation time of TEMPOL in the copolymer swollen by water and the lightest alcohols increases with decreasing specific absorbed volume. Time-domain NMR spectrometry of water-swollen DAE 26-4 shows that sorption of only 14% of the liquid required for its complete swelling is enough for full hydration of the polymer chains. Accordingly, in fully swollen DAE 26-4 the longitudinal relaxation time of water closely approaches the value of pure water. {(13)C} CP-MAS NMR on partially and fully water swollen samples of DAE 26-4 shows that swelling increases the mobility of the polymer chains, as clearly indicated by the narrowing of the best-resolved peaks. DAE 26-4 was used as an exotemplate for the synthesis of nanocomposites composed of the polymer and nanostructured Fe(2)O(3) through a series of ion-exchange/precipitation cycles. After the first cycle the nanoparticles are 3-4 nm in diameter, with practically unchanged size after subsequent cycles (up to five). In fact, the nanoparticle size never exceeded the diameter of the largest available pores. This suggests that the polymer framework controls the growth of the nanoparticles according to the template-controlled synthesis scheme. Selected-area electron diffraction, TEM, and high-resolution electron microscopy show that the nanostructured inorganic phase is composed of hematite.

4.
Phys Chem Chem Phys ; 12(9): 2170-6, 2010 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-20165765

RESUMEN

Hydrogen peroxide (H(2)O(2)) synthesis directly from dioxygen and dihydrogen was carried out using a continuous flow reactor with a Pd catalyst. The effects of ionic liquids on the selectivity to H(2)O(2) were studied on a Pd/SiO(2) catalyst. It was found that the ionic liquid [BMIM][BF(4)] in water or ethanol is quite beneficial to the selectivity to H(2)O(2). Ca. 95% selectivity after 1 h in both solvents and a relatively high selectivity i.e. (about 50% in ethanol and 40% in water) after 5 h reaction have been achieved. On the other hand, a plausible mechanism for the effects of ion liquids on this reaction system was suggested on the basis of the preliminary results.

5.
Philos Trans A Math Phys Eng Sci ; 368(1915): 1495-507, 2010 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-20156833

RESUMEN

Cross-linked functional polymers (functional resins) are versatile, designable and useful supports for metal nanoclusters that are able to provide reasonably thermally and mechanically stable multi-functional metal catalysts characterized by good activity and selectivity. The paper reviews authors' contributions to the field from the early 1990s to the present.

7.
Chemistry ; 13(8): 2392-401, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17167802

RESUMEN

The permeability of five gel-type synthetic resins, obtained by polymerization of 1-vinylpyrrolidin-2-one cross-linked with N,N'-methylenebisacrylamide (1, 2, 3, 4, and 5 wt %) and swollen by N,N-dimethylformamide (DMF), has been analyzed. The diffusion of 2,2,6,6-tetramethyl-4-oxo-1-piperidinyloxyl (TEMPONE) was studied by ultramicroelectrode voltammetry. Similar measurements were performed for solutions of non-cross-linked poly(vinylpyrrolidone) in DMF. To provide information on the rotational mobility of TEMPONE and the translational mobility of DMF, electron spin resonance (ESR) spectroscopic and pulsed-field-gradient spin-echo nuclear magnetic resonance (PGSE-NMR) spectroscopic experiments, respectively, were carried out. Comparative analysis of the results obtained by electrochemical, ESR spectroscopic, and PGSE-NMR spectroscopic measurements showed that diffusivity inside the polymer framework is significantly affected by the extent of cross-linking, the size of the diffusing probe, and the presence of electrolytes.

8.
Chemistry ; 11(24): 7395-404, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16134205

RESUMEN

Six gel-type functional resins, that is, three poly-DMAA-co-TMPTP (DMAA = N,N-dimethylacrylamide, TMPTP = trimethylolpropyltrimethacrylate) samples with different degrees of cross-linking (0.6, 1.2, 1.7 % mol) and three poly-DMAA-co-MA-co-TMPTP (MA = methacrylic acid, ca. 5.5 % mol) samples with 1.7, 3.5, and 7 % mol cross-linking were investigated with ISEC (inverse steric exclusion chromatography), and ESR and CP-MAS (cross polarization magic angle spinning) 13C NMR spectroscopy after swelling in water and other solvents. This unprecedented combination of conceptually independent physicochemical techniques provides a thorough overall consistent picture of the morphology of the resins on the nanometer scale and of the molecular accessibility of the swollen polymer framework to the paramagnetic probe TEMPONE (2,2,6,6-tetramethyl-4-oxo-1-oxypiperidine) and to selected solvents.

9.
Chemistry ; 8(13): 2962-7, 2002 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12489226

RESUMEN

Most hydrogen peroxide is currently produced by the selective hydrogenation of 2-ethylanthraquinone (EAQ) to 2-ethylanthrahydroquinone (EAHQ), followed by treatment with dioxygen; this produces hydrogen peroxide and regenerates 2-ethylanthraquinone. We have developed novel catalysts for this process that are based on palladium supported on very lipophilic functional resins and that are able to promote a chemoselectivity for EAHQ slightly but definitely superior to that provided by an industrial catalyst under identical conditions. This finding demonstrates the potential of variations of the lipophilic/hydrophilic character of the support as a tool for the improvement of the chemoselectivity of resin-based metal catalysts.

10.
Chemistry ; 9(1): 209-14, 2003 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-12506377

RESUMEN

The polymer framework of a resin-based catalyst built up with Pd nanoclusters (ca. 3 nm) dispersed inside the nanoporous domains of a thermally stable gel-type polyacrylic resin exhibits a good chemical stability under 5 bar H(2) at 40 degrees C for reasonable contact times. Chemical and physico-chemical integrity of the polymer framework are checked with a variety of instrumental analytical methods. Catalyst reusability turns out to be quite good.

11.
Chemistry ; 9(21): 5292-6, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-14613138

RESUMEN

The microporous (gel-type) functional resin co-poly-N,N-dimethylacrylamide (DMAA) (88 % mol)/methacrylic acid (MAA) (8 % mol)/N,N'-methylenebisacrylamide (MBAA) (4 % mol) (MPIF(H)) is employed as the hosting framework for the production of resin-supported Pd(0) nanoclusters. The obtained composite MPIF(-)Na(+)/Pd(0) is prepared upon reducing, in ethanol, MPIF(-)Pd(2+) (0.5), obtained upon previous homogeneous dispersion of "Pd(2+)" inside the resin particles (XRMA control) through ion-exchange. Metal nanoclusters appear to be size-controlled (2.0+/-0.2 nm) and are seen to reasonably fit the predominant resin "nanopores" diameter, determined in ethanol (3.2 nm) by means of inverse steric exclusion chromatography (ISEC).

12.
Chemistry ; 8(2): 366-71, 2002 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-11843148

RESUMEN

The first heterogeneous catalyst which affords polymerization of substituted acetylenes into readily available high molecular weight polymers is reported. The catalyst (Rh/PBI) has been prepared by supporting di-mu-chloro-bis(eta4-cycloocta-1,5-diene)dirhodium(I), [Rh(cod)Cl]2, on commercial polybenzimidazole (PBI) porous beads by means of a simple quantitative adsorption from THF solution, and tested in polymerization of phenylacetylene, 4-fluorophenylacetylene, and 4-pentylphenylacetylene. The polymer molecules formed were found to be released from the Rh/PBI to surrounding solution during the polymerization performed in THF. Formation of high molecular weight ((M)w values up to 325,000) polymers in prevailing cis-transoid configuration has been observed with all monomers. In a comparison with free [Rh(cod)Cl]2 used as the homogeneous catalyst, the Rh/PBI can be used repeatedly, exhibits somewhat lower polymerization activity but almost no oligomerization activity, and provides polymers of higher molecular weight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA