Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 126(2): 335-47, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23052020

RESUMEN

Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to abiotic stresses will be critical, and foremost among the abiotic stresses is low temperature. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant fall-sown barley germplasm with resistance to low temperature. We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) and one line from Oregon State University (OR): NB3437f/OR71 (facultative × facultative) and NB713/OR71 (winter × facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for low temperature tolerance (LTT) and vernalization sensitivity (VS). The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a probable determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48 % of the phenotypic variation in field survival at St. Paul, MN, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties.


Asunto(s)
Adaptación Biológica/genética , Frío , Genes de Plantas/genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Ligamiento Genético , Genotipo , Nebraska , Oregon , Fenotipo , Estaciones del Año
2.
Poult Sci ; 102(3): 102447, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680864

RESUMEN

Younger broiler breeder flocks produce smaller eggs containing smaller yolks, with potentially lower energy reserves for the developing chick. Creatine is a naturally occurring energy source and is abundant in metabolically active tissues; providing this to chicks in ovo should provide additional energy to improve hatchability and post-hatch growth. Thus, post-hatch performance of male and female chicks hatched from younger breeder flocks supplemented with creatine monohydrate (CrM) in ovo was investigated. Four hundred eggs from Ross 308 breeder hens aged 27 to 29 wk were collected and at d 14 assigned to a treatment group and received 1) no injection, 2) 0.75% saline injection, or 3) 8.16 mg creatine monohydrate in 0.75% saline. At hatch 72 birds (24/treatment) were euthanized and BW, breast muscle, heart and liver weight were obtained, and breast muscle tissue was placed in 10% buffered formalin. Birds were then placed in raised metal pens (24 pens; 10-11 birds/pen; 8 replicates/treatment) and grown to d 42 with BW and pen feed intake measured once a week. At d 42, ninty-six birds were euthanized (2 male and 2 female/pen) and the process occurred as at hatch. Body composition was obtained for 48 birds (2/pen; 1 male,1 female) with a dual energy X-ray absorptiometry (DXA) scanner. Breast muscle tissue was processed for histological analysis and breast muscle fiber parameters were analyzed by ImageJ. While not statistically significant, the CrM treatment group saw an improved hatch rate (CrM: 93.5%, Saline: 88.6%, Control: 88.8%) and reduced early post hatch mortality. Chicks given in ovo CrM had significantly increased creatine concentrations in both liver and heart tissue at hatch compared to those in the saline and control groups. BW, BW gain, and final body composition parameters were not statistically different between treatments and in ovo CrM did not affect breast muscle fiber number or area. The creatine injection likely improved the energy status of the growing embryo resulting in the improved hatch rate but leaving little reserves for post-hatch growth.


Asunto(s)
Pollos , Creatina , Animales , Femenino , Masculino , Pollos/fisiología , Creatina/farmacología , Óvulo , Carbohidratos , Músculos Pectorales
3.
BMC Genomics ; 12: 4, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21205322

RESUMEN

BACKGROUND: Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL). RESULTS: Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines--the "dominant" and "recessive" marker stocks--and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the Hordeum genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (ZEO) and the VRS1 gene, which determines the two-row and six-row germplasm groups of barley. CONCLUSIONS: We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in de novo genome assembly, development of ultra-high density genetic maps and association mapping.


Asunto(s)
Hordeum/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Genoma de Planta , Polimorfismo de Nucleótido Simple
5.
Planta ; 226(1): 139-46, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17245568

RESUMEN

Six barley (Hordeum vulgare L.) accessions, previously used as parents of mapping populations, were evaluated for characters potentially affecting the location of low-temperature (LT) tolerance QTLs. Three were of winter growth habit (Kompolti Korai, Nure, and Strider), one was facultative (Dicktoo) and two were spring (Morex and Tremois). Final leaf number (FLN) and LT(50 )were determined at weekly intervals from 0 to 98 days of LT acclimation/vernalization under both long day (LD) and short day (SD) photoperiods. The point of vegetative/reproductive transition was determined from measurements of double ridge (DR) formation and FLN. With the exception of Nure, SD delayed development by increasing leaf production. Dicktoo was extremely SD sensitive lengthening its vegetative phase by more than 63 days relative to the LD photoperiod. SD had the opposite effect on Nure, causing an accelerating of flowering exhibiting the characteristic of 'short day vernalization'. All accessions except Dicktoo and Kompolti Korai acclimated rapidly in the first 7 days of LT exposure, approaching their maximum LT tolerance in 14-21 days. Dicktoo and Kompolti Korai continued to slowly acclimate until reproductive transition. The results emphasize two important points: (1) the location of QTLs for LT tolerance, and as a consequence the identification of putative candidate genes, will be a function of the genotypes sampled, the experimental conditions used, and the quality of the phenotypic data and (2) the barley LT tolerance pathway reaches an early impediment relative to closely related more hardy members of the Triticeae such as wheat and rye.


Asunto(s)
Aclimatación , Frío , Hordeum/genética , Hordeum/fisiología , Fotoperiodo , Sitios de Carácter Cuantitativo
6.
Mol Genet Genomics ; 277(3): 249-61, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17151889

RESUMEN

The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted "winter type" allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F(2) progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel "spring" alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted "winter type" alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F(2) populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of "winter vs spring type" alleles at the VRN-H loci.


Asunto(s)
Epistasis Genética , Hordeum/genética , Modelos Genéticos , Aclimatación/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Cruzamientos Genéticos , Cartilla de ADN/genética , ADN de Plantas/genética , Genes de Plantas , Variación Genética , Intrones , Datos de Secuencia Molecular , Fotoperiodo , Filogenia , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA