Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Physiol ; 599(7): 2015-2036, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559882

RESUMEN

KEY POINTS: The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT: The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 µM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.


Asunto(s)
Estereocilios , Membrana Tectoria , Animales , Matriz Extracelular , Células Ciliadas Auditivas Externas , Ratones , Emisiones Otoacústicas Espontáneas , Transductores
2.
J Neurosci ; 36(2): 336-49, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758827

RESUMEN

The transduction of sound into electrical signals depends on mechanically sensitive ion channels in the stereociliary bundle. The molecular composition of this mechanoelectrical transducer (MET) channel is not yet known. Transmembrane channel-like protein isoforms 1 (TMC1) and 2 (TMC2) have been proposed to form part of the MET channel, although their exact roles are still unclear. Using Beethoven (Tmc1(Bth/Bth)) mice, which have an M412K point mutation in TMC1 that adds a positive charge, we found that Ca(2+) permeability and conductance of the MET channel of outer hair cells (OHCs) were reduced. Tmc1(Bth/Bth) OHCs were also less sensitive to block by the permeant MET channel blocker dihydrostreptomycin, whether applied extracellularly or intracellularly. These findings suggest that the amino acid that is mutated in Bth is situated at or near the negatively charged binding site for dihydrostreptomycin within the permeation pore of the channel. We also found that the Ca(2+) dependence of the operating range of the MET channel was altered by the M412K mutation. Depolarization did not increase the resting open probability of the MET current of Tmc1(Bth/Bth) OHCs, whereas raising the intracellular concentration of the Ca(2+) chelator BAPTA caused smaller increases in resting open probability in Bth mutant OHCs than in wild-type control cells. We propose that these observations can be explained by the reduced Ca(2+) permeability of the mutated MET channel indirectly causing the Ca(2+) sensor for adaptation, at or near the intracellular face of the MET channel, to become more sensitive to Ca(2+) influx as a compensatory mechanism. SIGNIFICANCE STATEMENT: In the auditory system, the hair cells convert sound-induced mechanical movement of the hair bundles atop these cells into electrical signals through the opening of mechanically gated ion channels at the tips of the bundles. Although the nature of these mechanoelectrical transducer (MET) channels is still unclear, recent studies implicate transmembrane channel-like protein isoform 1 (TMC1) channels in the mammalian cochlea. Using a mutant mouse model (Beethoven) for progressive hearing loss in humans (DFNA36), which harbors a point mutation in the Tmc1 gene, we show that this mutation affects the MET channel pore, reducing its Ca(2+) permeability and its affinity for the permeant blocker dihydrostreptomycin. A number of phenomena that we ascribe to Ca(2+)-dependent adaptation appear stronger, in compensation for the reduced Ca(2+) entry.


Asunto(s)
Antibacterianos/farmacología , Calcio/metabolismo , Sulfato de Dihidroestreptomicina/farmacología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Proteínas de la Membrana/genética , Mutación Puntual/genética , Animales , Animales Recién Nacidos , Calcio/farmacología , Quelantes/farmacología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células Ciliadas Auditivas Externas/fisiología , Técnicas In Vitro , Mecanotransducción Celular/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Órgano Espiral/citología , Técnicas de Placa-Clamp
3.
Proc Natl Acad Sci U S A ; 111(41): 14918-23, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25228765

RESUMEN

Mechanotransduction in the auditory and vestibular systems depends on mechanosensitive ion channels in the stereociliary bundles that project from the apical surface of the sensory hair cells. In lower vertebrates, when the mechanoelectrical transducer (MET) channels are opened by movement of the bundle in the excitatory direction, Ca(2+) entry through the open MET channels causes adaptation, rapidly reducing their open probability and resetting their operating range. It remains uncertain whether such Ca(2+)-dependent adaptation is also present in mammalian hair cells. Hair bundles of both outer and inner hair cells from mice were deflected by using sinewave or step mechanical stimuli applied using a piezo-driven fluid jet. We found that when cochlear hair cells were depolarized near the Ca(2+) reversal potential or their hair bundles were exposed to the in vivo endolymphatic Ca(2+) concentration (40 µM), all manifestations of adaptation, including the rapid decline of the MET current and the reduction of the available resting MET current, were abolished. MET channel adaptation was also reduced or removed when the intracellular Ca(2+) buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was increased from a concentration of 0.1 to 10 mM. The findings show that MET current adaptation in mouse auditory hair cells is modulated similarly by extracellular Ca(2+), intracellular Ca(2+) buffering, and membrane potential, by their common effect on intracellular free Ca(2+).


Asunto(s)
Adaptación Fisiológica , Calcio/metabolismo , Células Ciliadas Auditivas/fisiología , Activación del Canal Iónico , Canales Iónicos/metabolismo , Mecanotransducción Celular , Estereocilios/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Animales , Calcio/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Espacio Extracelular/metabolismo , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/fisiología , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Ratones , Estereocilios/efectos de los fármacos
4.
J Physiol ; 594(13): 3667-81, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27111754

RESUMEN

KEY POINTS: The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli. In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles. We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop. We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. ABSTRACT: Mutations in Myo6, the gene encoding the (F-actin) minus end-directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells' apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano-electrical transduction. We report that Ca(2+) -dependent adaptation of the mechano-electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links, fails to be downregulated along the length of the stereocilia in maturing Myo6 mutant mice. MET currents of heterozygous littermates appear normal. We propose that myosin VI, by removing key molecules from developing hair bundles, is required for the development of the MET apparatus and its Ca(2+) -dependent adaptation.


Asunto(s)
Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Mecanotransducción Celular/fisiología , Cadenas Pesadas de Miosina/fisiología , Animales , Calcio/fisiología , Ratones , Ratones Mutantes , Cadenas Pesadas de Miosina/genética
5.
Stem Cells ; 33(9): 2864-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038197

RESUMEN

The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non-α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox-2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging.


Asunto(s)
Proliferación Celular/fisiología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Colinérgicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
6.
J Neurosci ; 34(16): 5505-14, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24741041

RESUMEN

Tip links between adjacent stereocilia are believed to gate mechano-electrical transducer (MET) channels and mediate the electrical responses of sensory hair cells. We found that mouse auditory hair cells that lack tip links due to genetic mutations or exposure to the Ca(2+) chelator BAPTA can, however, still respond to mechanical stimuli. These MET currents have unusual properties and are predominantly of the opposite polarity relative to those measured when tip links are present. There are other striking differences, for example, the channels are usually all closed when the hair cell is not stimulated and the currents in response to strong stimuli can be substantially larger than normal. These anomalous MET currents can also be elicited early in development, before the onset of mechano-electrical transduction with normal response polarity. Current-voltage curves of the anomalous MET currents are linear and do not show the rectification characteristic of normal MET currents. The permeant MET channel blocker dihydrostreptomycin is two orders of magnitude less effective in blocking the anomalous MET currents. The findings suggest the presence of a large population of MET channels with pore properties that are distinct from those of normal MET channels. These channels are not gated by hair-bundle links and can be activated under a variety of conditions in which normal tip-link-mediated transduction is not operational.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Células Ciliadas Auditivas/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Animales , Animales Recién Nacidos , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Permeabilidad de la Membrana Celular/genética , Quelantes/farmacología , Sulfato de Dihidroestreptomicina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Embrión de Mamíferos , Femenino , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Masculino , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miosina VIIa , Miosinas/genética , Órgano Espiral/citología , Precursores de Proteínas/genética
7.
Stem Cells Int ; 2020: 3692937, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190057

RESUMEN

Damage to the sensory hair cells and the spiral ganglion neurons of the cochlea leads to deafness. Induced pluripotent stem cells (iPSCs) are a promising tool to regenerate the cells in the inner ear that have been affected by pathology or have been lost. To facilitate the clinical application of iPSCs, the reprogramming process should minimize the risk of introducing undesired genetic alterations while conferring the cells the capacity to differentiate into the desired cell type. Currently, reprogramming induced by synthetic mRNAs is considered to be one of the safest ways of inducing pluripotency, as the transgenes are transiently delivered into the cells without integrating into the genome. In this study, we explore the ability of integration-free human-induced pluripotent cell lines that were reprogrammed by mRNAs, to differentiate into otic progenitors and, subsequently, into hair cell and neuronal lineages. hiPSC lines were induced to differentiate by culturing them in the presence of fibroblast growth factors 3 and 10 (FGF3 and FGF10). Progenitors were identified by quantitative microscopy, based on the coexpression of otic markers PAX8, PAX2, FOXG1, and SOX2. Otic epithelial progenitors (OEPs) and otic neuroprogenitors (ONPs) were purified and allowed to differentiate further into hair cell-like cells and neurons. Lineages were characterised by immunocytochemistry and electrophysiology. Neuronal cells showed inward Na+ (I Na) currents and outward (I k) and inward K+ (I K1) currents while hair cell-like cells had inward I K1 and outward delayed rectifier K+ currents, characteristic of developing hair cells. We conclude that human-induced pluripotent cell lines that have been reprogrammed using nonintegrating mRNAs are capable to differentiate into otic cell types.

8.
EMBO Mol Med ; 11(9): e10288, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31448880

RESUMEN

Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.


Asunto(s)
Pérdida Auditiva/metabolismo , Estereocilios/metabolismo , Adulto , Anciano , Animales , Estudios de Cohortes , Femenino , Células Ciliadas Auditivas/metabolismo , Audición , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estereocilios/genética
9.
Nat Commun ; 9(1): 4015, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275467

RESUMEN

In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals.


Asunto(s)
Potenciales de Acción/fisiología , Cóclea/inervación , Vías Eferentes/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Mecanotransducción Celular/fisiología , Animales , Vías Auditivas/citología , Vías Auditivas/metabolismo , Células Cultivadas , Colinérgicos/metabolismo , Cóclea/citología , Vías Eferentes/citología , Gerbillinae , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Audición/fisiología , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Estereocilios/metabolismo
10.
Front Mol Neurosci ; 10: 326, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093662

RESUMEN

The ability of cochlear hair cells to convert sound into receptor potentials relies on the mechanoelectrical transducer (MET) channels present in their stereociliary bundles. There is strong evidence implying that transmembrane channel-like protein (TMC) 1 contributes to the pore-forming subunit of the mature MET channel, yet its expression is delayed (~>P5 in apical outer hair cells, OHCs) compared to the onset of mechanotransduction (~P1). Instead, the temporal expression of TMC2 coincides with this onset, indicating that it could be part of the immature MET channel. We investigated MET channel properties from OHCs of homo- and heterozygous Tmc2 knockout mice. In the presence of TMC2, the MET channel blocker dihydrostreptomycin (DHS) had a lower affinity for the channel, when the aminoglycoside was applied extracellularly or intracellularly, with the latter effect being more pronounced. In Tmc2 knockout mice OHCs were protected from aminoglycoside ototoxicity during the first postnatal week, most likely due to their small MET current and the lower saturation level for aminoglycoside entry into the individual MET channels. DHS entry through the MET channels of Tmc2 knockout OHCs was lower during the first than in the second postnatal week, suggestive of a developmental change in the channel pore properties independent of TMC2. However, the ability of TMC2 to modify the MET channel properties strongly suggests it contributes to the pore-forming subunit of the neonatal channel. Nevertheless, we found that TMC2, different from TMC1, is not necessary for OHC development. While TMC2 is required for mechanotransduction in mature vestibular hair cells, its expression in the immature cochlea may be an evolutionary remnant.

11.
Physiol Rep ; 4(3)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26869684

RESUMEN

The mechanoelectrical transducer (MET) channels located at the stereocilia tip of cochlear hair cells are crucial to convert the mechanical energy of sound into receptor potentials, but the identity of its pore-forming subunits remains uncertain. Piezo1, which has been identified in the transcriptome of mammalian cochlear hair cells, encodes a transmembrane protein that forms mechanosensitive channels in other tissues. We investigated the properties of the MET channel in outer hair cells (OHCs) of Piezo1 mice (postnatal day 6-9). The MET current was elicited by deflecting the hair bundle of OHCs using sinewave and step stimuli from a piezo-driven fluid jet. Apical and basal OHCs were investigated because the properties of the MET channel vary along the cochlea. We found that the maximal MET current amplitude and the resting open probability of the MET channel in OHCs were similar between Piezo1(+/-) haploinsufficient mice and wild-type littermates. The sensitivity to block by the permeant MET channel blocker dihydrostreptomycin was also similar between the two genotypes. Finally, the anomalous mechano-gated current, which is activated by sheer force and which is tip-link independent, was unaffected in OHCs from Piezo1(+/-) haploinsufficient mice. Our results suggest that Piezo1 is unlikely to be a component of the MET channel complex in mammalian cochlear OHCs.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Canales Iónicos/genética , Mecanotransducción Celular/genética , Animales , Haploinsuficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp
12.
Neurosci Lett ; 553: 57-62, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23872091

RESUMEN

The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18ß-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABA(A) receptors contribute to this response. A lack of effect by baclofen suggests that GABA(B) receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.


Asunto(s)
Epéndimo/metabolismo , Células-Madre Neurales/fisiología , Receptores de GABA-A/metabolismo , Médula Espinal/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Colorantes , Epéndimo/citología , Epéndimo/crecimiento & desarrollo , Uniones Comunicantes/fisiología , Técnicas In Vitro , Técnicas de Placa-Clamp , Ratas Wistar , Médula Espinal/crecimiento & desarrollo , Ácido gamma-Aminobutírico/farmacología
13.
Brain Res ; 1345: 45-58, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20471378

RESUMEN

Kv3 voltage-gated K(+) channels are important in shaping neuronal excitability and are abundant in the CNS, with each Kv3 gene exhibiting a unique expression pattern. Mice lacking the gene encoding for the Kv3.3 subunit exhibit motor deficits. Furthermore, mutations in this gene have been linked to the human disease spinocerebellar ataxia 13, associated with cerebellar and extra-cerebellar symptoms such as imbalance and nystagmus. Kv subunit localisation is important in defining their functional roles and thus, we investigated the distribution of Kv3.3-immunoreactivity in the vestibular nuclear complex of rats with particular focus on the medial vestibular nucleus (MVN). Kv3.3-immunoreactivity was widespread in the vestibular nuclei and was detected in somata, dendrites and synaptic terminals. Kv3.3-immunoreactivity was observed in distinct neuronal populations and dual labelling with the neuronal marker NeuN revealed 28.5+/-1.9% of NeuN labelled MVN neurones were Kv3.3-positive. Kv3.3-immunoreactivity co-localised presynaptically with the synaptic vesicle marker SV2, parvalbumin, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. VGluT1 terminals were scarce within the MVN (2.5+/-1.1 per 50 microm(2)) and co-localisation was not observed. However, 85.4+/-9.4% of VGluT1 terminals targeted and enclosed Kv3.3-immunoreactive somata. Presynaptic Kv3.3 co-localisation with the GABAergic marker GAD67 was also not observed. Cytoplasmic GlyT2 labelling was observed in a subset of Kv3.3-positive neurones. Electron microscopy confirmed a pre- and post-synaptic distribution of the Kv3.3 protein. This study provides evidence supporting a role for Kv3.3 subunits in vestibular processing by regulating neuronal excitability pre- and post-synaptically.


Asunto(s)
Neuronas/metabolismo , Canales de Potasio Shaw/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Núcleos Vestibulares/metabolismo , Animales , Antígenos Nucleares/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Glutamato Descarboxilasa/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Inmunohistoquímica , Glicoproteínas de Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Parvalbúminas/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Ratas Wistar , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA