Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 294(1): 117-126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31660804

RESUMEN

Background Detection of cerebral lesions at MRI may benefit from a chemically stable and more sensitively detected gadolinium-based contrast agent (GBCA). Gadopiclenol, a macrocyclic GBCA with at least twofold higher relaxivity, is currently undergoing clinical trials in humans. Purpose To determine the relationship between MRI contrast enhancement and the injected dose of gadopiclenol in a glioma rat model compared with those of conventional GBCA at label dose. Materials and Methods Between April and July 2012, 32 rats implanted with C6 glioma received two intravenous injections at a 24-hour interval. The injections were randomly selected among five doses of gadopiclenol (0.025, 0.05, 0.075, 0.1, and 0.2 mmol/kg) and three reference GBCAs (gadoterate meglumine, gadobutrol, and gadobenate dimeglumine) at 0.1 mmol/kg. MRI tumor enhancement was assessed on T1-weighted images before and up to 30 minutes after injection. Two blinded radiologists visually and qualitatively scored contrast enhancement, border delineation, and visualization of tumor morphology. Quantitatively, variations in contrast-to-noise ratio (ΔCNR) between tumor and contralateral parenchyma were calculated at each time point and were compared for each treatment at 5 minutes by using a mixed model after normality test. Results A total of 24 rats underwent the complete protocol (n = 5-7 per group). A linear dose-dependent ΔCNR relationship was observed between 0.025 and 0.1 mmol/kg for gadopiclenol (R 2 = 0.99). No difference in ΔCNR was observed between the three reference GBCAs (P ≥ .55). Gadopiclenol resulted in twofold higher ΔCNR at 0.1 mmol/kg (P < .001 vs gadobutrol and gadoterate, P = .002 vs gadobenate) and similar ΔCNR at 0.05 mmol/kg (P = .56, P > .99, and P = .44 compared with gadobutrol, gadobenate, and gadoterate, respectively). For both readers, 0.05 mmol/kg of gadopiclenol improved contrast enhancement, border delineation, and visualization of tumor morphology (scores > 3 compared with scores between 2 and 3 for the marketed GBCA). Conclusion Gadopiclenol at 0.05 mmol/kg yielded comparable change in contrast-to-noise ratio and morphologic characterization of brain tumors compared with gadobenate, gadoterate, or gadobutrol at 0.1 mmol/kg. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Asunto(s)
Compuestos de Azabiciclo/administración & dosificación , Neoplasias Encefálicas/diagnóstico por imagen , Gadolinio/administración & dosificación , Glioma/diagnóstico por imagen , Compuestos Heterocíclicos/administración & dosificación , Imagen por Resonancia Magnética/métodos , Meglumina/análogos & derivados , Compuestos Organometálicos/administración & dosificación , Animales , Encéfalo/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Aumento de la Imagen/métodos , Meglumina/administración & dosificación , Ratas , Sensibilidad y Especificidad
2.
Radiology ; 288(2): 424-433, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786486

RESUMEN

Purpose To compare the long-term brain elimination kinetics and gadolinium species in healthy rats after repeated injections of the contrast agents gadodiamide (a linear contrast agent) or gadoterate (a macrocyclic contrast agent). Materials and Methods Nine-week-old rats received five doses of 2.4 mmol gadolinium per kilogram of body weight over 5 weeks and were followed for 12 months with T1-weighted MRI (n = 140 rats, corresponding to seven time points, two contrast agents, and 10 rats per group). Animals were sacrificed at 1 week, 1 month, and 2, 3, 4, 5, and 12 months after the last injection. Brain and plasma were sampled to determine the total gadolinium concentration by using inductively coupled plasma mass spectrometry (ICP-MS). For the cerebellum, gadolinium speciation analysis was performed after mild extraction at four time points (1 month and 3, 5, and 12 months after the last injection) by using size exclusion chromatography and hydrophilic interaction liquid chromatography, both coupled to ICP-MS. Tissue gadolinium kinetics were fitted to estimate the area under the curves and tissue elimination half-lives over the 12-month injection-free period. Results T1 hyperintensity of the deep cerebellar nuclei was observed only in gadodiamide-treated rats and remained stable from the 1st month after the last injection (the ratio of the signal intensity of the deep cerebellar nuclei to the signal intensity of the brain stem at 1 year: 1.101 ± 0.023 vs 1.037 ± 0.022 before injection, P < .001). Seventy-five percent of the total gadolinium detected after the last injection of gadodiamide (3.25 nmol/g ± 0.30) was retained in the cerebellum at 1 year (2.45 nmol/g ± 0.35), with binding of soluble gadolinium to macromolecules. No T1 hyperintensity was observed with gadoterate, consistent with a rapid, time-dependent washout of the intact gadolinium chelate down to background levels (0.07 nmol/g ± 0.03). Conclusion After repeated administration of gadodiamide, a large portion of gadolinium was retained in the brain, with binding of soluble gadolinium to macromolecules. After repeated injection of gadoterate, only traces of the intact chelated gadolinium were observed with time-dependent clearance. Online supplemental material is available for this article.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Meglumina/farmacocinética , Compuestos Organometálicos/farmacocinética , Animales , Modelos Animales , Ratas , Espectrofotometría Atómica/métodos , Tiempo
3.
Regul Toxicol Pharmacol ; 73(3): 960-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26382613

RESUMEN

The purpose of this study was to assess the safety of gadoterate meglumine, a gadolinium-based contrast agent used in magnetic resonance imaging, in neonatal and juvenile rats. Rats received a single intravenous administration on postnatal day (PND) 10 or 6 administrations (from PND 10 to 30), at doses of 0, 0.6, 1.25, and 2.5 mmol/kg/administration, i.e. equivalent to approximately 1, 2 and 4-times the usual human dose. The animals were sacrificed at the end of the treatment period or after a 60-day treatment-free period. No mortality and no significant treatment-related effect on clinical signs, macroscopic and histopathological findings, development, behavior, sexual maturation and hematology parameters were observed. Minor non-adverse changes were observed in clinical biochemistry and urinary parameters. Based on AUC0-t, gadoterate meglumine was more rapidly eliminated at PND 30 vs. PND 10, reflecting maturation of kidney function. At the end of the treatment period, Gd was measurable in all organs sampled after single or repeated dosing and levels were dose-dependent as expected, the highest ones being found in kidneys. The total Gd concentrations were similar in all the organs following a single or repeated dosing. At the end of the treatment-free period, only traces of gadolinium were quantifiable, almost exclusively in kidneys, reflecting the excretory function of this organ. In conclusion, single or repeated administration of gadoterate meglumine to juvenile rats was well tolerated.


Asunto(s)
Medios de Contraste/toxicidad , Meglumina/toxicidad , Compuestos Organometálicos/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Esquema de Medicación , Inyecciones Intravenosas , Meglumina/administración & dosificación , Meglumina/farmacocinética , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacocinética , Ratas Sprague-Dawley , Eliminación Renal , Medición de Riesgo , Factores de Tiempo , Distribución Tisular
4.
Crit Rev Toxicol ; 44(10): 895-913, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25257840

RESUMEN

Nephrogenic systemic fibrosis (NSF) is an iatrogenic scleroderma-like fibrosing systemic disorder occurring in patients with severe or end-stage renal disease. It was established as a new clinical entity in the year 2000. A causal role for gadolinium chelates (GC), widely used as contrast agents for magnetic resonance imaging, was suggested six years later. It rapidly appeared that the occurrence of NSF was associated with prior administration of GCs with lower thermodynamic stability, leading to warnings being published by health authorities and learned societies worldwide. Although a role for the chelated form of the less stable GCs has been proposed, the most commonly accepted hypothesis involves the gradual release of dissociated gadolinium in the body, leading to systemic fibrosis. However, the entire chain of events is still not fully understood in a causal way and many uncertainties remain.


Asunto(s)
Gadolinio/toxicidad , Dermopatía Fibrosante Nefrogénica/patología , Animales , Quelantes/química , Medios de Contraste/química , Modelos Animales de Enfermedad , Fibrosis , Gadolinio/química , Humanos , Imagen por Resonancia Magnética , Dermopatía Fibrosante Nefrogénica/inducido químicamente , Factores de Riesgo
6.
Arterioscler Thromb Vasc Biol ; 32(6): e36-48, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22516067

RESUMEN

OBJECTIVE: Acute ischemic events are often caused by the disruption of lipid-rich plaques, which are frequently not angiographically visible. Vascular cell adhesion molecule-1 and apoptotic cell-targeted peptides studied during our previous work were conjugated to ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-R832 for vascular cell adhesion molecule-1 targeting; USPIO-R826 for apoptosis targeting) and assessed by magnetic resonance imaging. METHODS AND RESULTS: Apolipoprotein E knockout mice were injected with 0.1 mmol Fe/kg body weight and were imaged on a 4.7-T Bruker magnetic resonance imaging until 24 hours after contrast agent administration. Aortic samples were then harvested and examined by histochemistry, and the magnetic resonance images and histological micrographs were analyzed with ImageJ software. The plaques enhanced by USPIO-R832 contained macrophages concentrated in the cap and a large necrotic core, whereas USPIO-R826 produced a negative enhancement of plaques rich in macrophages and neutral fats concentrated inside the plaque. Both USPIO derivatives colocalized with their target on histological sections and were able to detect plaques with a vulnerable morphology, but each one is detecting a specific environment. CONCLUSIONS: Our vascular cell adhesion molecule-1 and apoptotic cell targeted USPIO derivatives seem to be highly promising tools for atherosclerosis imaging contributing to the detection of vulnerable plaques. They are able to attain their target in low doses and as fast as 30 minutes after administration.


Asunto(s)
Enfermedades de la Aorta/diagnóstico , Apoptosis , Aterosclerosis/diagnóstico , Medios de Contraste , Dextranos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Péptidos , Placa Aterosclerótica/diagnóstico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Dextranos/administración & dosificación , Dextranos/farmacocinética , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inyecciones Intravenosas , Células Jurkat , Macrófagos/metabolismo , Macrófagos/patología , Nanopartículas de Magnetita/administración & dosificación , Ratones , Ratones Noqueados , Necrosis , Péptidos/administración & dosificación , Péptidos/farmacocinética , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Valor Predictivo de las Pruebas , Unión Proteica , Distribución Tisular
7.
Mol Pharm ; 9(4): 850-61, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22352457

RESUMEN

P947 (DOTA-Gd-peptide) was recently identified as an MRI contrast agent for the detection and characterization of the matrix metalloproteinases (MMP)-rich atherosclerotic plaques. Because this product displays a broad spectrum affinity for the MMP family, we hypothesized that it may also recognize other metalloproteinases overactivated in vulnerable atherosclerotic plaques. Therefore, this study aimed at describing, at the molecular and cellular level, the interactions between P947 and proteases of atherosclerotic plaques. Fluorimetric assays were used to measure the in vitro affinity of P947 toward recombinant and purified MMPs, angiotensin-converting enzyme (ACE), endothelin-converting enzyme (ECE-1), neutral endopeptidase (NEP), and both aminopeptidases A and N (APA and APN). Using similar fluorimetric assays associated with specific substrates, enzymatic activities were measured in vulnerable and stable plaques collected from human atherosclerotic carotid arteries. Ex vivo affinity of P947 for metalloproteinases in vulnerable lesions was subsequently determined. Interaction between P947 and major cell types present in atherosclerotic plaques was also investigated in different cell lines: PMA-1-differentiated THP-1 (macrophage), Ox-LDL-treated THP-1 (foam cell), Jurkat cell line (lymphocyte), and human umbilical vein endothelial cell (HUVEC, endothelial cell). Molecular targeting of P947 was confirmed by fluorimetry, ICP-MS, and in vitro MRI approaches. Potential application of P947 for detecting atherosclerotic plaques by in vivo MRI was tested in a rabbit model of atherosclerosis. In vitro, P947 displayed affinities for purified MMPs, ACE, ECE-1, NEP, APA, and APN in the micromolar range. Interestingly, MMPs, ACE, and APN exhibited higher activities in vulnerable plaques from human atherosclerotic carotid samples, as compared to stable plaques. ECE-1, NEP, and APA had either no activity or the same low activity in both vulnerable and stable plaques. P947 showed micromolar affinities for MMPs, ACE, and APN secreted by plaque samples. Moreover, P947 bound to THP-1 macrophages and THP-1 foam cells in a concentration-dependent manner and with a higher intensity than the control contrast agents DOTA-Gd or P1135 (DOTA-Gd coupled to a scrambled peptide). In THP-1 macrophages, P947 inhibited largely (70%) and almost completely (95%) MMP and APN activities, respectively, which strongly suggested an MMP- and APN-dependent binding of P947 to these cells. This enzyme-specific binding was confirmed with in vitro MRI. Indeed, the T1 value of THP-1 cells decreased from 2.094 s (macrophages w/o P947) to 2.004 s (macrophages with 1 mM of P947). In addition, the Gd content measured by ICP-MS was 11.01 ± 1.05 fg Gd/macrophage when cells were incubated in the presence of P947 and only 5.18 ± 0.43 fg Gd/macrophage with the control product P1135. The difference of Gd concentration between both contrast agents corresponded to a specific accumulation of 5.83 fg Gd/cell, which may be detected by MRI. MR imaging in the atherosclerosis rabbit model showed enhancement of the aortic wall after P947 injection with a significant increase of CNR values from 0.21 ± 0.02 (before injection) to 0.37 ± 0.07 (after injection), demonstrating the efficacy of the contrast agent to detect the atherosclerotic plaques in vivo. Taken together, these data suggest that P947 may be an interesting contrast agent for in vivo molecular MR imaging of MMPs, ACE, and APN activities present in vulnerable atherosclerotic plaques.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Aminopeptidasas/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Medios de Contraste/metabolismo , Enzimas Convertidoras de Endotelina , Fluorometría , Humanos , Metaloendopeptidasas/metabolismo , Neprilisina/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Conejos
8.
Eur Heart J ; 32(12): 1561-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21118852

RESUMEN

AIMS: P947 is a gadolinium-based magnetic resonance imaging (MRI) contrast agent with high affinity for several matrix metalloproteinases (MMPs) involved in arterial wall remodelling. We tested whether the intensity of enhancement detected in vivo in the arterial wall with P947 and MRI correlates with actual tissue MMP-related enzymatic activity measured in a rabbit atherosclerotic model subjected to dietary manipulations. METHODS AND RESULTS: Aortas of 15 rabbits in which atherosclerotic lesions were induced by balloon angioplasty and 4 months of hypercholesterolaemic diet were imaged at 'baseline' with P947-enhanced MRI. Atherosclerotic rabbits were divided into three groups: five rabbits were sacrificed ('baseline' group); five rabbits continued to be fed a lipid-supplemented diet ('high-fat' group); and five rabbits were switched from atherogenic to a purified chow diet ('low-fat' group). Four months later, a second P947-enhanced MRI was acquired in the 10 remaining rabbits. A significantly lower signal was detected in the aortic wall of rabbits from the 'low-fat' group as compared with rabbits from the 'high-fat' group (21 ± 6 vs. 46 ± 3%, respectively; P = 0.04). Such differences were not detected with the contrast agent P1135, which lacks the MMP-specific peptide sequence. In addition, the intensity of aortic wall enhancement detected with MRI after injection of P947 strongly correlated with actual MMP-2 gelatinolytic activity measured in corresponding aortic segments using zymography (r = 0.87). CONCLUSION: P947-enhanced MRI can distinguish dietary-induced variations in MMP-related enzymatic activity within plaques in an experimental atherosclerotic model, supporting its utility as a clinical imaging tool for in vivo detection of arterial wall remodelling.


Asunto(s)
Enfermedades de la Aorta/patología , Aterosclerosis/patología , Metaloproteinasas de la Matriz/metabolismo , Animales , Aorta Abdominal , Aterosclerosis/metabolismo , Colesterol/metabolismo , Medios de Contraste , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Compuestos Heterocíclicos/metabolismo , Angiografía por Resonancia Magnética , Compuestos Organometálicos/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Conejos
9.
Invest Radiol ; 57(2): 130-139, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411032

RESUMEN

OBJECTIVES: The aim of the set of studies was to compare gadopiclenol, a new high relaxivity gadolinium (Gd)-based contrast agent (GBCA) to gadobenate dimeglumine in terms of small brain lesion enhancement and Gd retention, including T1 enhancement in the cerebellum. MATERIALS AND METHODS: In a first study, T1 enhancement at 0.1 mmol/kg body weight (bw) of gadopiclenol or gadobenate dimeglumine was evaluated in a small brain lesions rat model at 2.35 T. The 2 GBCAs were injected in an alternated and cross-over manner separated by an interval of 4.4 ± 1.0 hours (minimum, 3.5 hours; maximum, 6.1 hours; n = 6). In a second study, the passage of the GBCAs into cerebrospinal fluid (CSF) was evaluated by measuring the fourth ventricle T1 enhancement in healthy rats at 4.7 T over 23 minutes after a single intravenous (IV) injection of 1.2 mmol/kg bw of gadopiclenol or gadobenate dimeglumine (n = 6/group). In a third study, Gd retention at 1 month was evaluated in healthy rats who had received 20 IV injections of 1 of the 2 GBCAs (0.6 mmol/kg bw) or a similar volume of saline (n = 10/group) over 5 weeks. T1 enhancement of the deep cerebellar nuclei (DCN) was assessed by T1-weighted magnetic resonance imaging at 2.35 T, performed before the injection and thereafter once a week up to 1 month after the last injection. Elemental Gd levels in central nervous system structures, in muscle and in plasma were determined by inductively coupled plasma mass spectrometry (ICP-MS) 1 month after the last injection. RESULTS: The first study in a small brain lesion rat model showed a ≈2-fold higher number of enhanced voxels in lesions with gadopiclenol compared with gadobenate dimeglumine. T1 enhancement of the fourth ventricle was observed in the first minutes after a single IV injection of gadopiclenol or gadobenate dimeglumine (study 2), resulting, in the case of gadopiclenol, in transient enhancement during the injection period of the repeated administrations study (study 3). In terms of Gd retention, T1 enhancement of the DCN was noted in the gadobenate dimeglumine group during the month after the injection period. No such enhancement of the DCN was observed in the gadopiclenol group. Gadolinium concentrations 1 month after the injection period in the gadopiclenol group were slightly increased in plasma and lower by a factor of 2 to 3 in the CNS structures and muscles, compared with gadobenate dimeglumine. CONCLUSIONS: In the small brain lesion rat model, gadopiclenol provides significantly higher enhancement of brain lesions compared with gadobentate dimeglumine at the same dose. After repeated IV injections, as expected for a macrocyclic GBCA, Gd retention is minimalized in the case of gadopiclenol compared with gadobenate dimeglumine, resulting in no T1 hypersignal in the DCN.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Animales , Compuestos de Azabiciclo , Encéfalo/diagnóstico por imagen , Medios de Contraste , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos , Meglumina/análogos & derivados , Ratas
10.
Invest Radiol ; 57(5): 283-292, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066532

RESUMEN

PURPOSE: Several preclinical studies have reported the presence of gadolinium (Gd) in different chemical forms in the brain, depending on the class (macrocyclic versus linear) of Gd-based contrast agent (GBCA) administered. The aim of this study was to identify, with a special focus on insoluble species, the speciation of Gd retained in the deep cerebellar nuclei (DCN) of rats administered repeatedly with gadoterate or gadodiamide 4 months after the last injection. METHODS: Three groups (N = 6/group) of healthy female Sprague-Dawley rats (SPF/OFA rats; Charles River, L'Arbresle, France) received a cumulated dose of 50 mmol/kg (4 daily intravenous administrations of 2.5 mmol/kg, for 5 weeks, corresponding to 80-fold the usual clinical dose if adjusted for man) of gadoterate meglumine (macrocyclic) or gadodiamide (linear) or isotonic saline for the control group (4 daily intravenous administrations of 5 mL/kg, for 5 weeks). The animals were sacrificed 4 months after the last injection. Deep cerebellar nuclei were dissected and stored at -80°C before sample preparation. To provide enough tissue for sample preparation and further analysis using multiple techniques, DCN from each group of 6 rats were pooled. Gadolinium species were extracted in 2 consecutive steps with water and urea solution. The total Gd concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). Soluble Gd species were analyzed by size-exclusion chromatography coupled to ICP-MS. The insoluble Gd species were analyzed by single-particle (SP) ICP-MS, nanoscale secondary ion mass spectroscopy (NanoSIMS), and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX) for elemental detection. RESULTS: The Gd concentrations in pooled DCN from animals treated with gadoterate or gadodiamide were 0.25 and 24.3 nmol/g, respectively. For gadoterate, the highest amount of Gd was found in the water-soluble fractions. It was present exclusively as low-molecular-weight compounds, most likely as the intact GBCA form. In the case of gadodiamide, the water-soluble fraction of DCN was composed of high-molecular-weight Gd species of approximately 440 kDa and contained only a tiny amount (less than 1%) of intact gadodiamide. Furthermore, the column recovery calculated for this fraction was incomplete, which suggested presence of labile complexes of dissociated Gd3+ with endogenous molecules. The highest amount of Gd was detected in the insoluble residue, which was demonstrated, by SP-ICP-MS, to be a particulate form of Gd. Two imaging techniques (NanoSIMS and STEM-EDX) allowed further characterization of these insoluble Gd species. Amorphous, spheroid structures of approximately 100-200 nm of sea urchin-like shape were detected. Furthermore, Gd was consistently colocalized with calcium, oxygen, and phosphorous, strongly suggesting the presence of structures composed of mixed Gd/Ca phosphates. No or occasional colocalization with iron and sulfur was observed. CONCLUSION: A dedicated analytical workflow produced original data on the speciation of Gd in DCN of rats repeatedly injected with GBCAs. The addition, in comparison with previous studies of Gd speciation in brain, of SP element detection and imaging techniques allowed a comprehensive speciation analysis approach. Whereas for gadoterate the main fraction of retained Gd was present as intact GBCA form in the soluble fractions, for linear gadodiamide, less than 10% of Gd could be solubilized and characterized using size-exclusion chromatography coupled to ICP-MS. The main Gd species detected in the soluble fractions were macromolecules of 440 kDa. One of them was speculated to be a Gd complex with iron-binding protein (ferritin). However, the major fraction of residual Gd was present as insoluble particulate species, very likely composed of mixed Gd/Ca phosphates. This comprehensive Gd speciation study provided important evidence for the dechelation of linear GBCAs and offered a deeper insight into the mechanisms of Gd deposition in the brain.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Animales , Encéfalo/metabolismo , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/metabolismo , Medios de Contraste , Femenino , Gadolinio DTPA , Meglumina , Fosfatos/metabolismo , Ratas , Ratas Sprague-Dawley , Agua/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 30(3): 403-10, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20139362

RESUMEN

OBJECTIVE: Atherosclerotic plaque rupture leads to acute thrombus formation and may trigger serious clinical events such as myocardial infarction or stroke. Therefore, it would be valuable to identify atherothrombosis and vulnerable plaques before the onset of such clinical events. We sought to determine whether the noninvasive in vivo visualization of activated platelets was effective when using a target-specific MRI contrast agent to identify thrombi, hallmarks of vulnerable or high-risk atherosclerotic plaques. METHODS AND RESULTS: Inflammatory thrombi were induced in mice via topical application of arachidonic acid on the carotid. Thrombus formation was imaged with intravital fluorescence microscopy and molecular MRI. To accomplish the latter, a paramagnetic contrast agent (P975) that targets the glycoprotein alpha(IIb)beta(3), expressed on activated platelets, was investigated. The specificity of P975 for activated platelets was studied in vitro. In vivo, high spatial-resolution MRI was performed at baseline and longitudinally over 2 hours after injecting P975 or a nonspecific agent. The contralateral carotid, a sham surgery group, and a competitive inhibition experiment served as controls. P975 showed a good affinity for activated platelets, with an IC(50) (concentration of dose that produces 50% inhibition) value of 2.6 micromol/L. In thrombosed animals, P975 produced an immediate and sustained increase in MRI signal, whereas none of the control groups revealed any significant increase in MRI signal 2 hours after injection. More important, the competitive inhibition experiment with an alpha(IIb)beta(3) antagonist suppressed the MRI signal enhancement, which is indicative for the specificity of P975 for the activated platelets. CONCLUSIONS: P975 allowed in vivo target-specific noninvasive MRI of activated platelets.


Asunto(s)
Ácido Araquidónico/efectos adversos , Plaquetas/patología , Trombosis de las Arterias Carótidas/inducido químicamente , Trombosis de las Arterias Carótidas/patología , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Activación Plaquetaria , Animales , Plaquetas/efectos de los fármacos , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Especificidad de Órganos , Compuestos Organometálicos , Péptidos Cíclicos
12.
Invest Radiol ; 56(9): 535-544, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813574

RESUMEN

PURPOSE: To date, the analysis of gadolinium (Gd) speciation in the brain of animals administered with macrocyclic and linear Gd-based contrast agents (GBCAs) has been limited to Gd soluble in mild buffers. Under such conditions, less than 30% of the brain tissue was solubilized and the extraction recoveries of GBCAs into the aqueous phase were poor, especially in the case of the linear GBCAs. The aim of this study was to find the conditions to solubilize the brain tissue (quasi-)completely while preserving the Gd species present. The subsequent analysis using size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) was intended to shed the light on the speciation of the additionally recovered Gd. METHODS: Four groups of healthy female Sprague Dawley rats (SPF/OFA rats; Charles River, L'Arbresle, France) received randomly 5 intravenous injections (1 injection per week during 5 consecutive weeks) of either gadoterate meglumine, gadobenate dimeglumine, gadodiamide (cumulated dose of 12 mmol/kg), or no injection (control group). The animals were sacrifice 1 week (W1) after the last injection. Brain tissues were solubilized with urea solution, whereas tissues extracted with water served as controls. Total Gd concentrations were determined in the original brain tissue and its soluble and insoluble fractions by inductively coupled plasma-mass spectrometry (ICP-MS) to calculate the Gd accumulation and extraction efficiency. Size exclusion chromatography coupled to ICP-MS was used to monitor the speciation of Gd in the soluble fractions. The stability of GBCAs in the optimum conditions was monitored by spiking the brain samples from the untreated animals. The column recoveries were precisely determined in the purpose of the discrimination of weakly and strongly bound Gd complexes. The identity of the eluted species was explored by the evaluation of the molecular size and retention time matching with Gd chelates and ferritin standard. The speciation analyses were carried out for 2 different brain structures, cortex and cerebellum. RESULTS: The combination of water and urea extractions (sequential extraction) managed to solubilize efficiently the brain tissue (97% ± 1%) while preserving the stability of the initially injected form of GBCA. For macrocyclic gadoterate, 97% ± 1% and 102% ± 3% of Gd initially present in the cortex and cerebellum were extracted to the soluble fraction. For gadobenate, similar amounts of Gd (49% ± 1% and 46% ± 4%) were recovered from cortex and cerebellum. For gadodiamide, 48% ± 2% of Gd was extracted from cortex and 34% ± 1% from cerebellum. These extraction efficiencies were higher than reported elsewhere. The SEC-ICP-MS and the column recovery determination proved that Gd present at low nmol/g levels in brain tissue was exclusively in the intact GBCA form in all the fractions of brain from the animals treated with gadoterate. For the linear GBCAs (gadobenate and gadodiamide), 3 Gd species of different hydrodynamic volumes were detected in the urea-soluble fraction: (1) larger than 660 kDa, (2) approximately 440 kDa, and (3) intact GBCAs. The species of 440 kDa corresponded, on the basis of the elution volume, to a Gd3+ complex with ferritin. Gd3+ was also demonstrated by SEC-ICP-MS to react with the ferritin standard in 100 mM ammonium acetate (pH 7.4). In contrast to macrocyclic gadoterate, for linear GBCAs, the column recovery was largely incomplete, suggesting the presence of free, hydrolyzed, or weakly bound Gd3+ with endogenous ligands. CONCLUSIONS: The sequential extraction of rat brain tissue with water and urea solution resulted in quasi-complete solubilization of the tissue and a considerable increase in the recoveries of Gd species in comparison with previous reports. The macrocyclic gadoterate was demonstrated to remain intact in the brain 1 week after administration to rats. The linear GBCAs gadobenate and gadodiamide underwent ligand exchange reactions resulting in the presence of a series of Gd3+ complexes of different strength with endogenous ligands. Ferritin was identified as one of the macromolecules reacting with Gd3+. For the linear GBCAs, 3% of the insoluble brain tissue was found to contain more than 50% of Gd in unidentified form(s).


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/metabolismo , Gadolinio , Compuestos Organometálicos , Animales , Femenino , Gadolinio DTPA , Compuestos Organometálicos/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Invest Radiol ; 56(12): 826-836, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091462

RESUMEN

OBJECTIVE: The aim of this study was to investigate the toxicological profile of gadopiclenol, a new high-relaxivity macrocyclic gadolinium-based contrast agent (GBCA), in renally impaired rats, in comparison with 2 other macrocyclic GBCAs, gadoterate meglumine and gadobutrol, and 1 linear and nonionic GBCA, gadodiamide. METHODS: Renal failure was induced by adding 0.75% wt/wt adenine to the diet for 3 weeks. During the second week of adenine-enriched diet, the animals (n = 8/group × 5 groups) received 5 consecutive intravenous injections of GBCA at 2.5 mmol/kg per injection, resulting in a cumulative dose of 12.5 mmol/kg or saline followed by a 3-week treatment-free period after the last injection. The total (elemental) gadolinium (Gd) concentration in different tissues (brain, cerebellum, femoral epiphysis, liver, skin, heart, kidney, spleen, plasma, urine, and feces) was measured by inductively coupled plasma mass spectrometry. Transmission electron microscopy (and electron energy loss spectroscopy analysis of metallic deposits) was used to investigate the presence and localization of Gd deposits in the skin. Relaxometry was used to evaluate the presence of dissociated Gd in the skin, liver, and bone. Skin histopathology was performed to investigate the presence of nephrogenic systemic fibrosis-like lesions. RESULTS: Gadodiamide administrations were associated with high morbidity-mortality but also with macroscopic and microscopic skin lesions in renally impaired rats. No such effects were observed with gadopiclenol, gadoterate, or gadobutrol. Overall, elemental Gd concentrations were significantly higher in gadodiamide-treated rats than in rats treated with the other GBCAs for all tissues except the liver (where no significant difference was found with gadopiclenol) and the kidney and the heart (where statistically similar Gd concentrations were observed for all GBCAs). No plasma biochemical abnormalities were observed with gadopiclenol or the control GBCAs. Histopathology revealed a normal skin structure in the rats treated with gadopiclenol, gadoterate, and gadobutrol, contrary to those treated with gadodiamide. No evidence of Gd deposits on collagen fibers and inclusions in fibroblasts was found with gadopiclenol and its macrocyclic controls, unlike with gadodiamide. Animals of all test groups had Gd-positive lysosomal inclusions in the dermal macrophages. However, the textures differed for the different products (speckled texture for gadodiamide and rough-textured appearance for the 2 tested macrocyclic GBCAs). CONCLUSIONS: No evidence of biochemical toxicity or pathological abnormalities of the skin was observed, and similar to other macrocyclic GBCAs, gadoterate and gadobutrol, tissue retention of Gd was found to be low (except in the liver) in renally impaired rats treated with the new high-relaxivity GBCA gadopiclenol.


Asunto(s)
Compuestos Organometálicos , Insuficiencia Renal , Adenina , Animales , Compuestos de Azabiciclo , Encéfalo , Medios de Contraste , Gadolinio , Gadolinio DTPA , Ratas
14.
Diagn Interv Imaging ; 102(10): 641-648, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34099436

RESUMEN

PURPOSE: To evaluate the potential differences in non-target embolization and vessel microsphere filling of a reflux-control microcatheter (RCM) compared to a standard end-hole microcatheter (SEHM) in a swine model. MATERIALS AND METHODS: Radiopaque microspheres were injected with both RCM and SEHM (2.4-Fr and 2.7-Fr) in the kidneys of a preclinical swine model. Transarterial renal embolization procedures with RCM or SEHM were performed in both kidneys of 14 pigs. Renal arteries were selectively embolized with an automated injection protocol of radio-opaque microspheres. Ex-vivo X-ray microtomography images of the kidneys were utilized to evaluate the embolization by quantification of the deposition of injected microspheres in the target vs. the non-target area of injection. X-ray microtomography images were blindly analyzed by five interventional radiologists. The degree of vessel filling and the non-target embolization were quantified using a scale from 1 to 5 for each parameter. An analysis of variance was used to compare the paired scores. RESULTS: Total volumes of radio-opaque microspheres injected were similar for RCM (11.5±3.6 [SD] mL; range: 6-17mL) and SEHM (10.6±5.2 [SD] mL; range: 4-19mL) (P=0.38). The voxels enhanced ratio in the target (T) vs. non-target (NT) areas was greater with RCM (T=98.3% vs. NT=1.7%) than with SEHM (T=89% vs. NT=11%) but the difference was not significant (P=0.30). The total score blindly given by the five interventional radiologists was significantly different between RCM (12.3±2.1 [SD]; range: 6-15) and the standard catheter (11.3±2.5 [SD]; range: 4-15) (P=0.0073), with a significant decrease of non-target embolization for RCM (3.8±1.3 [SD]; range: 3.5-4.2) compared to SEHM (3.2±1.5 [SD]; range: 2.9-3.5) (P=0.014). CONCLUSION: In an animal model, RCM microcatheters reduce the risk of non-target embolization from 11% to 1.7%, increasing the delivery of microspheres of 98% to the target vessels, compared to SEHM microcatheters.


Asunto(s)
Embolización Terapéutica , Animales , Catéteres , Riñón , Microesferas , Arteria Renal/diagnóstico por imagen , Porcinos
15.
Radiology ; 255(2): 527-35, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20413763

RESUMEN

PURPOSE: To assess the capability of the folate receptor (FR)-targeted ultrasmall superparamagnetic iron oxide (USPIO) P1133 to provide FR-specific enhancement of breast cancers on magnetic resonance (MR) images. MATERIALS AND METHODS: This study was approved by the institutional Animal Care and Use Committee. The FR-targeted contrast agent P1133 was incubated with various FR-positive human breast cancer cell lines, with and without free folic acid (FFA) as a competitor. Labeling efficiencies were evaluated with MR imaging and inductively coupled plasma mass spectrometry. Subsequently, six athymic rats with implanted FR-positive MDA-MB-231 breast cancers underwent MR imaging at 3 T before and up to 1 hour and 24 hours after injection of P1133. Six athymic rats with implanted FR-positive MDA-MB-231 cancers injected with the non-FR-targeted USPIO P904 and nine athymic rats with implanted FR-negative A549 lung cancers injected with P1133 (n = 6) or P904 (n = 3) served as controls. Data of the in vitro studies were compared for significant differences with the Wilcoxon test for two independent samples. Tumor signal-to-noise-ratios (SNRs) were compared between different experimental groups by using the Kruskal-Wallis test and were correlated with histopathologic findings. Differences with P < .05 were considered significant. RESULTS: FR-positive breast cancer cells showed a significant P1133 uptake which was inhibited by FFA. MDA-MB-231 cells showed the highest level of P1133 uptake and the strongest T2 effect on MR images. In vivo, all tumors showed an initial perfusion effect. At 24 hours after injection, only MDA-MB-231 tumors injected with P1133 showed significantly decreased SNR data compared with baseline data (P < .05). MR findings were confirmed by using histopathologic findings. CONCLUSION: The FR-targeted USPIO P1133 demonstrates a specific retention in FR-positive breast cancers. Because FR expression correlates with tumor aggressiveness and prognosis, persistent P1133 tumor enhancement may be used as a noninvasive indicator for tumors with poor outcome.


Asunto(s)
Neoplasias de la Mama/patología , Medios de Contraste/química , Dextranos/química , Óxido Ferrosoférrico/química , Ácido Fólico/química , Ácido Fólico/metabolismo , Imagen por Resonancia Magnética/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita , Nanopartículas , Ratas , Ratas Desnudas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Estadísticas no Paramétricas , Trasplante Heterólogo
16.
Invest Radiol ; 55(3): 138-143, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31917763

RESUMEN

PURPOSE: The aim of this study was to investigate the presence and chemical forms of residual gadolinium (Gd) in rat brain after a single dose of Gd-based contrast agent. METHODS: Four groups of healthy rats (2 sacrifice time-points, n = 10/group, 80 rats in total) were randomized to receive a single intravenous injection of 1 of the 3 Gd-based contrast agents (GBCAs) (gadoterate meglumine, gadobenate dimeglumine, or gadodiamide) or the same volume of 0.9% saline solution. The injected concentration was 0.6 mmol/kg, corresponding to a concentration of 0.1 mmol/kg in humans after body surface normalization between rats and humans (according to the US Food and Drug Administration recommendations). Animals were sacrificed at 2 washout times: 1 (M1) and 5 (M5) months after the injection. Total Gd concentrations were determined in cerebellum by inductively coupled plasma mass spectrometry. Gadolinium speciation was analyzed by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry after extraction from cerebellum. RESULTS: A single injection of a clinically relevant dose of GBCA resulted in the detectable presence of Gd in the cerebellum 1 and 5 months after injection. The cerebellar total Gd concentrations after administration of the least stable GBCA (gadodiamide) were significantly higher at both time-points (M1: 0.280 ± 0.060 nmol/g; M5: 0.193 ± 0.023 nmol/g) than those observed for macrocyclic gadoterate (M1: 0.019 ± 0.004 nmol/g, M5: 0.004 ± 0.002 nmol/g; P < 0.0001). Gadolinium concentrations after injection of gadobenate were significantly lower at both time-points (M1: 0.093 ± 0.020 nmol/g; M5: 0.067 ± 0.013 nmol/g; P < 0.05) than the Gd concentration measured after injection of gadodiamide. At the 5-month time-point, the Gd concentration in the gadoterate group was also significantly lower than the Gd concentration in the gadobenate group (P < 0.05). Gadolinium speciation analysis of the water-soluble fraction showed that, after injection of the macrocyclic gadoterate, Gd was still detected only in its intact, chelated form 5 months after injection. In contrast, after a single dose of linear GBCAs (gadobenate and gadodiamide), 2 different forms were detected: intact GBCA and Gd bound to soluble macromolecules (above 80 kDa). Elimination of the intact GBCA form was also observed between the first and fifth month, whereas the amount of Gd present in the macromolecular fraction remained constant 5 months after injection. CONCLUSIONS: A single injection of a clinically relevant dose of GBCA is sufficient to investigate long-term Gd retention in the cerebellar parenchyma. Administration of linear GBCAs (gadodiamide and gadobenate) resulted in higher residual Gd concentrations than administration of the macrocyclic gadoterate. Speciation analysis of the water-soluble fraction of cerebellum confirmed washout of intact GBCA over time. The quantity of Gd bound to macromolecules, observed only with linear GBCAs, remained constant 5 months after injection and is likely to represent a permanent deposition.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Gadolinio/farmacocinética , Meglumina/análogos & derivados , Compuestos Organometálicos/farmacocinética , Animales , Cromatografía en Gel , Medios de Contraste/administración & dosificación , Femenino , Gadolinio/administración & dosificación , Gadolinio DTPA/administración & dosificación , Humanos , Inyecciones Intravenosas , Meglumina/administración & dosificación , Meglumina/farmacocinética , Modelos Animales , Compuestos Organometálicos/administración & dosificación , Ratas , Ratas Sprague-Dawley
17.
Radiology ; 251(2): 429-38, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19224894

RESUMEN

PURPOSE: To evaluate the capability of P947, a magnetic resonance (MR) imaging contrast agent that molecularly targets matrix metalloproteinases (MMPs), to aid detection and imaging of MMPs in atherosclerotic lesions in vivo; its specificity compared with that of P1135; expression and distribution of MMPs in atherosclerotic vessels; and in vivo distribution and molecular localization of fluorescent europium (Eu) P947. MATERIALS AND METHODS: The Animal Care and Use Committee approved all experiments. P947 was synthesized by attaching a gadolinium chelate (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) to a peptide that specifically binds MMPs. Scrambled form of P947 (P1135) was synthesized by replacing the targeting moiety of P947 with a scrambled peptide lacking the ability to bind MMPs. P947, P1135, and gadoterate meglumine were injected into atherosclerotic apolipoprotein E-deficient and wild-type mice. The aortic MR imaging enhancement produced by the contrast agents was measured at different times and was compared by using one-way analysis of variance. MMP expression was investigated in the aortas by using MMP immunostaining and in situ MMP zymography. A fluorescent form of P947 (Eu-P947) was synthesized to compare the in vivo distribution of the contrast agent (Eu-P947) with specific MMP immunofluorescent staining. RESULTS: MMP-targeted P947 facilitated a 93% increase (P < .001) in MR image signal intensity (contrast-to-noise ratio [CNR], 17.7 compared with 7.7; P < .001) of atherosclerotic lesions in vivo. Nontargeted P1135 (scrambled P947) provided 33% MR image enhancement (CNR, 10.8), whereas gadoterate meglumine provided 5% (CNR, 6.9). Confocal laser scanning microscopy demonstrated colocalization between fluorescent Eu-P947 and MMPs in atherosclerotic plaques. Eu-P947 was particularly present in the fibrous cap region of plaques. CONCLUSION: P947 improved MR imaging for atherosclerosis through MMP-specific targeting. The results were validated and provide support for further assessment of P947 as a potential tool for the identification of unstable atherosclerosis.


Asunto(s)
Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Gadolinio/farmacocinética , Imagen por Resonancia Magnética/métodos , Metaloproteinasas de la Matriz/metabolismo , Técnicas de Sonda Molecular , Animales , Quelantes/farmacocinética , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mapeo de Interacción de Proteínas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Radiology ; 252(2): 401-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19703881

RESUMEN

PURPOSE: To evaluate the use of a recently developed fast-clearing ultrasmall superparamagnetic iron oxide (USPIO) for detection of vascular inflammation in atherosclerotic plaque. MATERIALS AND METHODS: The study protocol was approved by the animal experimentation ethics committee. A recently introduced USPIO, P904, and a reference-standard USPIO, ferumoxtran-10, were tested in a rabbit model of induced aortic atherosclerosis. In vivo magnetic resonance (MR) angiography and T2*-weighted plaque MR imaging were performed at baseline and after administration of P904 and ferumoxtran-10 (administered dose for both, 1000 micromol of iron per kilogram of body weight) in 26 hyperlipidemic New Zealand white rabbits. The variation in vessel wall area over time was evaluated with nonparametric testing. Ex vivo MR imaging findings were compared with iron content at linear regression analysis. RESULTS: With in vivo MR imaging, plaque analysis was possible as early as 24 hours after P904 injection. The authors observed a 27.75% increase in vessel wall area due to susceptibility artifacts on day 2 (P = .04) and a 38.81% increase on day 3 (P = .04) after P904 administration compared with a 44.5% increase in vessel wall area on day 7 (P = .04) and a 34.8% increase on day 10 (P = .22) after ferumoxtran-10 administration. These susceptibility artifacts were correlated with intraplaque iron uptake in the corresponding histologic slices. The number of pixels with signal loss on the ex vivo MR images was linearly correlated with the logarithm of the iron concentration (P = .0001; R(2) = 0.93). CONCLUSION: Plaque inflammation in rabbits can be detected earlier with P904 than with ferumoxtran-10 owing to the faster blood pharmacokinetics and the early uptake of P904 in the reticuloendothelial system. SUPPLEMENTAL MATERIAL: http://radiology.rsnajnls.org/cgi/content/full/252/2/401/DC1.


Asunto(s)
Aortitis/metabolismo , Aortitis/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Hierro/farmacocinética , Angiografía por Resonancia Magnética/métodos , Óxidos/farmacocinética , Animales , Medios de Contraste/farmacocinética , Dextranos , Modelos Animales de Enfermedad , Óxido Ferrosoférrico , Humanos , Nanopartículas de Magnetita , Tasa de Depuración Metabólica , Proyectos Piloto , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
J Magn Reson Imaging ; 30(6): 1249-58, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19938037

RESUMEN

In recent years there has been a renewed interest in the physicochemical properties of gadolinium chelates (GC). The aim of this review is to discuss the physicochemical properties of marketed GC with regard to possible biological consequences. GC can be classified according to three key molecular features: 1) the nature of the chelating moiety: either macrocyclic molecules in which Gd(3+) is caged in the preorganized cavity of the ligand, or linear, open-chain molecules; 2) ionicity: the ionicity of the molecule varies from neutral to tri-anionic agents; and 3) the presence or absence of an aromatic lipophilic moiety, which has a profound impact on the biodistribution of the GC. These parameters can also explain why GC differ considerably with regard to their thermodynamic stability constants and kinetic stability, as demonstrated by numerous studies. The concept of thermodynamic and kinetic stability is critically discussed, as it remains somewhat controversial, especially in predicting the amount of free gadolinium that may result from decomplexation of chelates in physiologic or pathologic situations. This review examines the possibility that the high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) can minimize the amount of free Gd(3+) released in the body. J. Magn. Reson. Imaging 2009;30:1249-1258. (c) 2009 Wiley-Liss, Inc.


Asunto(s)
Medios de Contraste/química , Medios de Contraste/farmacocinética , Gadolinio/química , Gadolinio/farmacocinética , Riñón/metabolismo , Animales , Quelantes/efectos adversos , Quelantes/química , Quelantes/farmacocinética , Medios de Contraste/efectos adversos , Estabilidad de Medicamentos , Gadolinio/efectos adversos , Humanos , Riñón/efectos de los fármacos , Cinética , Imagen por Resonancia Magnética/efectos adversos , Tasa de Depuración Metabólica , Dermopatía Fibrosante Nefrogénica/inducido químicamente , Dermopatía Fibrosante Nefrogénica/metabolismo , Especificidad de Órganos , Termodinámica , Distribución Tisular
20.
Mol Pharm ; 6(6): 1903-19, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19743879

RESUMEN

Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE(-/-) transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight paramagnetic agent. The new CA could have real potential in the diagnosis and therapy monitoring of atherosclerotic disease and of other apoptosis-associated pathologies, such as cancer, ischemia, chronic inflammation, autoimmune disorders, transplant rejection, neurodegenerative disorders, and diabetes mellitus. The phage display-derived peptide could also play a potential therapeutic role through anticoagulant activity by mimicking the role of annexin V, the endogenous ligand of phosphatidylserine.


Asunto(s)
Apoptosis/fisiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Péptidos/química , Fosfatidilserinas/metabolismo , Animales , Apolipoproteínas E/genética , Caspasa 3/análisis , Células Cultivadas , Femenino , Inmunohistoquímica , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Modelos Teóricos , Estructura Molecular , Fosfatidilserinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA