Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 29(29): e202300519, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36929221

RESUMEN

Unconjugated pterins are ubiquitous molecules that participate in countless enzymatic processes and are potentially involved in the photosensitization of singlet oxygen, amino acids, and nucleotides. Following electronic excitation with UV-A light, some of these pterins degrade, producing hydrogen peroxide as the main side product. This process, which is known to take place in vivo, contributes to oxidative stress and melanocyte destruction in vitiligo. In this work, we present for the first time mechanistic insight into the formation of transient triplet species that simultaneously trigger Type I and Type II photosensitizing processes and the initiation of degradation processes. Our calculations reveal that photodegradation of 6-biopterin, which accumulates in the skin of vitiligo patients, leads to 6-formylpterin through a retro-aldol reaction, and subsequently to 6-carboxypterin through a water-mediated aldehyde oxidation. Additionally, we show that the changes in the photosensitizing potential of these systems with pH come from the modulation of their excited-state redox potentials.


Asunto(s)
Vitíligo , Humanos , Fotólisis , Fármacos Fotosensibilizantes/química , Pterinas/química , Pterinas/metabolismo , Oxidación-Reducción
2.
Chemistry ; 29(29): e202301217, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37140152

RESUMEN

Invited for the cover of this issue are Enrique M. Arpa (Linköping University) and Inés Corral (Universidad Autónoma de Madrid). The image depicts two examples where pterin chemistry is relevant, the wing coloration of some butterflies and the cytotoxic action in vitiligo. Read the full text of the article at 10.1002/chem.202300519.

3.
Chemistry ; 29(21): e202203580, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36693799

RESUMEN

It is intriguing how a mixture of organic molecules survived the prebiotic UV fluxes and evolved into the actual genetic building blocks. Scientists are trying to shed light on this issue by synthesizing nucleic acid monomers and their analogues under prebiotic Era-like conditions and by exploring their excited state dynamics. To further add to this important body of knowledge, this study discloses new insights into the photophysical properties of protonated isoguanine, an isomorph of guanine, using steady-state and femtosecond broadband transient absorption spectroscopies, and quantum mechanical calculations. Protonated isoguanine decays in ultrafast time scales following 292 nm excitation, consistently with the barrierless paths connecting the bright S1 (ππ*) state with different internal conversion funnels. Complementary calculations for neutral isoguanine predict similar photophysical properties. These results demonstrate that protonated isoguanine can be considered photostable in contrast to protonated guanine, which exhibits 40-fold longer excited state lifetimes.

4.
Nature ; 546(7660): 676-680, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28658220

RESUMEN

Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive 'lymphoreporter' because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a 'MetAlert' discovery platform for drivers and inhibitors of metastasis.


Asunto(s)
Citocinas/metabolismo , Vasos Linfáticos/metabolismo , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/patología , Imagen de Cuerpo Entero/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Genes Reporteros , Humanos , Linfangiogénesis , Vasos Linfáticos/patología , Masculino , Melanoma/diagnóstico por imagen , Melanoma/metabolismo , Melanoma/patología , Ratones , Midkina , Comunicación Paracrina , Pronóstico , Recurrencia , Reproducibilidad de los Resultados , Serina-Treonina Quinasas TOR/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/análisis , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Angew Chem Int Ed Engl ; 62(49): e202312314, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37846849

RESUMEN

The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.

6.
J Am Chem Soc ; 144(18): 8185-8193, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35486830

RESUMEN

We present the synthesis, photophysical properties, and biological application of nontoxic 3-azo-conjugated BODIPY dyes as masked fluorescent biosensors of hypoxia-like conditions. The synthetic methodology is based on an operationally simple N═N bond-forming protocol, followed by a Suzuki coupling, that allows for a direct access to simple and underexplored 3-azo-substituted BODIPY. These dyes can turn on their emission properties under both chemical and biological reductive conditions, including bacterial and human azoreductases, which trigger the azo bond cleavage, leading to fluorescent 3-amino-BODIPY. We have also developed a practical enzymatic protocol, using an immobilized bacterial azoreductase that allows for the evaluation of these azo-based probes and can be used as a model for the less accessible and expensive human reductase NQO1. Quantum mechanical calculations uncover the restructuration of the topography of the S1 potential energy surface following the reduction of the azo moiety and rationalize the fluorescent quenching event through the mapping of an unprecedented pathway. Fluorescent microscopy experiments show that these azos can be used to visualize hypoxia-like conditions within living cells.


Asunto(s)
Técnicas Biosensibles , Colorantes , Compuestos Azo/química , Colorantes Fluorescentes/química , Humanos , Hipoxia , Microscopía Fluorescente
7.
Phys Chem Chem Phys ; 24(3): 1405-1414, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34982082

RESUMEN

This work investigates the photophysics of barbituric acid at different pH conditions using ab initio methods. Our calculations ascribe the most intense bands at ca. 260 nm at neutral pH and 210 nm at acidic pH conditions in the absorption spectra of this chromophore to the lowest lying ππ* transitions. Consistently with the ultrashort excited state lifetimes experimentally registered, the potential energy landscapes of both the neutral and deprotonated forms of barbituric acid combined with the interpretation of their transient absorption spectra suggest the deactivation of these systems along the singlet manifold. Compared to uracil, its closest natural nucleobase, barbituric acid presents a red shifted absorption spectrum, due to the lowering by more than 0.5 eV of the lowest-energy ππ* excited state, and a much more complex topography of the S1 potential energy surface, with several energetically accessible local minima. This fact, however, does not affect the excited state lifetimes, which for barbituric acid were experimentally registered in the sub-ps time scale.

8.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164254

RESUMEN

Small structural alterations of the purine/pyrimidine core have been related to important photophysical changes, such as the loss of photostability. Similarly to canonical nucleobases, solute-solvent interactions can lead to a change in the excited state lifetimes and/or to the interplay of different states in the photophysics of these modified nucleobases. To shed light on both effects, we here report a complete picture of the absorption spectra and excited state deactivation of deoxyguanosine and its closely related derivative, deoxydeazaguanosine, in water and methanol through the mapping of the excited state potential energy surfaces and molecular dynamics simulations at the TD-DFT level of theory. We show that the N by CH exchange in the imidazole ring of deoxyguanosine translates into a small red-shift of the bright states and slightly faster dynamics. In contrast, changing solvent from water to methanol implies the opposite, i.e., that the deactivation of both systems to the ground state is significantly hindered.

9.
Chemistry ; 27(47): 12058-12062, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34115440

RESUMEN

Subphthalocyanine (SubPc) chemistry has been limited so far by their high sensitivity toward strong nucleophiles. In particular, the substitution of the axial chlorine atom by a nucleophilic group in the case of less-reactive SubPcs, such as those bearing electron-withdrawing peripheral substituents, presents some limitations and requires harsh conditions. By taking advantage of the electrophilic character of DIBAL-H, it has been possible to prepare for the first time SubPc-hydride derivatives that exhibit high reactivity as hydroboration reagents of aldehydes. This hydride transfer requires using a typical carbonyl activator (trimethylsilyl triflate) and only one equivalent of aldehyde, affording SubPcs with an axial benzyloxy group in good yield. This transformation has proven to be a useful alternative method for the axial functionalisation of dodecafluoroSubPc, a paradigmatic SubPc derivative, by using electrophiles for the first time. Considering the increasing interest in SubPcs as electron-acceptor semiconductors with remarkable absorption in the visible range to replace fullerene in organic photovoltaic (OPV) devices, it is of the utmost importance to develop new synthetic methodologies for their axial functionalisation.

10.
Phys Chem Chem Phys ; 23(11): 6448-6454, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33720220

RESUMEN

High-level single and multireference ab initio calculations show that the Be4 cluster behaves as a very efficient Lewis acid when interacting with conventional Lewis bases such as ammonia, water or hydrogen fluoride, to the point that the corresponding acid-base interaction triggers a sequential dissociation of all the bonds of the Lewis base. Notably, this behavior is already found for the simplest beryllium cluster, the Be2 dimer. However, whereas for Be2 the first dissociation process involves a low activation barrier which is above the reactants, for Be4 all the bond dissociation processes involve barriers below the entrance channel leading to a cascade of successive exothermic processes, which end up spontaneously in a global minimum in which the bonding patterns of both the base and the Lewis acid are completely destroyed. Indeed, the global minimum, in all cases, is stabilized by three-center Be-H-Be bonds and covalent interactions between the Be atoms and the basic center of the base, which replace the initial metallic bond stabilizing the Be4 cluster. As a consequence, in the global minimum the basic atoms (N, O and F) behave as hyper-coordinated centers. Also importantly, the Be4 cluster and its complexes present RHF-UHF instabilities (not reported before for Be4), which require the use of multireference methods to correctly describe them.

11.
J Chem Phys ; 154(4): 044302, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33514089

RESUMEN

The structure, stability, and bonding of the complexes formed by the interaction of Mg4 clusters and first row Lewis bases, namely, ammonia, water, and hydrogen fluoride, have been investigated through the use of high-level G4 single-reference and CASPT2 multireference formalisms. The adducts formed reflect the high electrophilicity of the Mg4 cluster through electron density holes in the neighborhood of each metallic center. After the adduct formation, the metallic bonding of the Mg4 moiety is not significantly altered so that the hydrogen shifts from the Lewis base toward the Mg atoms lead to new local minima with enhanced stability. For the particular case of ammonia and water, the global minima obtained when all the hydrogens of the Lewis base are shifted to the Mg4 moiety have in common a very stable scaffold with a N or an O center covalently tetracoordinated to the four Mg atoms, so the initial bonding arrangements of both reactants have completely disappeared. The reactivity features exhibited by these Mg4 clusters suggest that nanostructures of this metal might have an interesting catalytic behavior.

12.
Angew Chem Int Ed Engl ; 60(3): 1498-1502, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32866305

RESUMEN

Chemical bonds are traditionally assigned as electron-sharing or donor-acceptor/dative. External criteria such as the nature of the dissociation process, energy partitioning schemes, or quantum chemical topology are invoked to assess the bonding situation. However, for systems with marked multi-reference character, this binary categorization might not be precise enough to render the bonding properties. A third scenario can be foreseen: spin polarized bonds. To illustrate this, the case of a NaBH3 - cluster is presented. According to the analysis NaBH3 - exhibits a strong diradical character and cannot be classified as either electron-sharing or a dative bond. Elaborated upon are the common problems of popular bonding descriptions. Additionally, a simple model, based on the bond order and local spin indicators, which discriminates between all three bonding situations, is provided.

13.
Chemphyschem ; 21(24): 2701-2708, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32598549

RESUMEN

Isolated Be2 is a typical example of a weakly bound system, but interaction with other systems may give rise to surprising bonding features. The interactions between Be2 and a set of selected neutral Cn Hn (n=2-8) π-systems have been analyzed through the use of G4 and G4MP2 ab initio methods, along with multireference CASPT2//CASPT2 calculations. Our results systematically show that the Cn Hn -Be2 -Cn Hn clusters formed are always very stable. However, the nature of this interaction is completely different when the π-system involved is a closed shell species (n=2, 4, 6, 8), or a radical (n=3, 5, 7). In the first case, the interaction does not occur with the π-system as a whole, but with specific C centers yielding rather polar but strong C-Be bonds. Nonetheless, although the Be-Be distances in these complexes are similar to the ones in compounds with ultra-strong Be-Be bonds, a close examination of their electron density distribution reveals that no Be-Be bonds exist. The situation is totally different when the interaction involves two π-radicals, Cn Hn -Be2 -Cn Hn (n=3, 5, 7). In these cases, a strong Be-Be bond is formed. Indeed, even though Be is electron deficient, the Be2 moiety behaves as an efficient electron donor towards the two π-radicals, so that the different Cn Hn -Be2 -Cn Hn (n=3, 5, 7) clusters are the result of the interaction between Be2 2+ and two L- anions. The characteristics of these two scenarios do not change when dealing with bicyclic π-compounds, such as naphthalene and pentalene, because the interaction with the Be2 moiety is localized on one of the unsaturated cycles, the other being almost a spectator.

14.
J Phys Chem A ; 124(50): 10422-10433, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33284609

RESUMEN

The substitution of canonical nucleobases by thiated analogues in natural DNA has been exploited in pharmacology, photochemotherapy, and structural biology. Thionucleobases react with adjacent thymines leading to 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), which are a major source of DNA photodamage, in particular intrastrand cross-linked photolesions. Here, we study the mechanism responsible for the formation of 6-4PPs in thionucleobases by employing quantum-mechanical calculations. We use multiconfiguration pair-density functional theory, complete active space second-order perturbation theory, and Kohn-Sham density functional theory. Scrutinizing the photochemistry of thionucleobases can elucidate the reaction mechanism of these prodrugs and identify the role that triplet excited states play in the generation of photolesions in the natural biopolymer. Three different possible mechanisms to generate the 6-4PPs are presented, and we conclude that the use of multireference approaches is indispensable to capture important features of the potential energy surface.


Asunto(s)
Daño del ADN , ADN/efectos de la radiación , Compuestos de Sulfhidrilo/química , Reactivos de Enlaces Cruzados/química , ADN/química , Dímeros de Pirimidina/química , Teoría Cuántica
15.
J Comput Chem ; 40(6): 794-810, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30593705

RESUMEN

The presence of nonadiabatic effects during the interaction of small molecules with metals has been observed experimentally for the last decades. Specially remarkable are the effects found for NO/Au, where experiments have suggested the presence of very strong vibronic coupling during the molecular scattering. However, the accurate inclusion of the nonadiabatic effects in periodic boundary conditions (PBC) theoretical methods remain an unapproachable challenge. Here, aiming to give some theoretical insight to the strong vibronic coupling, we have adopted a pragmatic point of view, taking use of an auxiliary simplified system, NO/Au3 . We show the importance of nonadiabatic coupling, during the scattering of NO from a Au3 cluster, using a diabatic representation of 12 electronic states of the system, including a few charge-transfer states. Our diabatic representation is obtained by rotating the orbital and configuration interaction (CI) vectors of a restricted active space (RAS) wavefunction. We present a strategy for extracting the best effective manifold of states relevant to the system, below some prescribed energy, directly from the RAS CI vectors. This scheme is able to disentangle a large dense manifold of adiabatic states with strong coupling and crossings. This approach is also shown to work for multireference configuration interaction (MRCI). By performing quantum propagations, we observed an increase in vibrational redistribution with increasing initial vibrational or translational energies. We suggest that these nonadiabatic effects should also be present at smaller energies in larger clusters. © 2018 Wiley Periodicals, Inc.

16.
Phys Chem Chem Phys ; 21(25): 13467-13473, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31187825

RESUMEN

This work scrutinizes the relaxation mechanism of 2-oxopurine. Contrary to its ancestor, purine, which is a UVC chromophore, 2-oxopurine shows a red-shifted absorption spectrum centered in the UVA region. In 2-oxopurine, relaxation along the ππ* spectroscopic state directs the population from the Franck-Condon (FC) region towards a minimum, which acts as a crossroad for the further decay of the system either to triplet states or, alternatively, to the ground state through a C6-puckered S1/S0 funnel. A comparison of the optical properties and excited state potential energy surfaces of purine, 2-oxopurine, 2-aminopurine, 6-oxopurine and adenine, allows establishing how the position and nature of substituent tune the photophysics of purine. For this series, we conclude that both C2 and C6 substitution redshift the absorption spectrum of purine, with 2-oxo substitution exhibiting the largest shift. An important exception is the canonical nucleobase adenine, which presents a blue shifted absorption spectrum. The topography of purine's ππ* potential energy surface experiences major changes when functionalized at the C6 position. In particular, the disappearance of the minimum along the ππ* potential energy surface efficiently funnels the excited state population from the FC region to the ground state and increases the photostability of 6-aminopurine (adenine) and 6-oxopurine (hypoxanthine) nucleobases.


Asunto(s)
Purinonas/química , 2-Aminopurina/química , Adenina/química , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Teoría Cuántica , Espectrofotometría , Termodinámica , Rayos Ultravioleta
17.
Chemphyschem ; 19(11): 1349-1357, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29537113

RESUMEN

Hydrogen has been proposed as a long-term non-fossil fuel to be used in a future ideal carbon-neutral energetic economy. However, its low volumetric energy density hinders its storage and transportation. Metal-organic frameworks (MOFs) represent very promising materials for this purpose due to their very extended surface areas. Azolates, in particular tetrazolates, are - together with carboxylate functionalities - very common organic linkers connecting metallic secondary building units in MOFs. This study addresses, from a theoretical perspective, the H2 adsorptive properties of tetrazolate linkers at the molecular level, following a size-progressive approach. Specifically, we have investigated how the physisorption energies and geometries are affected when changing the environment of the linker by considering the azolates in the gas phase, immersed in a finite cluster, or being part of an infinite extended crystal material. Furthermore, we also study the H2 adsorptive capacity of these linkers within the cluster model.

18.
Arterioscler Thromb Vasc Biol ; 37(9): 1732-1735, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28705793

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the role of Fat4 and Dachsous1 signaling in the lymphatic vasculature. APPROACH AND RESULTS: Phenotypic analysis of the lymphatic vasculature was performed in mice lacking functional Fat4 or Dachsous1. The overall architecture of lymphatic vasculature is unaltered, yet both genes are specifically required for lymphatic valve morphogenesis. Valve endothelial cells (Prox1high [prospero homeobox protein 1] cells) are disoriented and failed to form proper valve leaflets. Using Lifeact-GFP (green fluorescent protein) mice, we revealed that valve endothelial cells display prominent actin polymerization. Finally, we showed the polarized recruitment of Dachsous1 to membrane protrusions and cellular junctions of valve endothelial cells in vivo and in vitro. CONCLUSIONS: Our data demonstrate that Fat4 and Dachsous1 are critical regulators of valve morphogenesis. This study highlights that valve defects may contribute to lymphedema in Hennekam syndrome caused by Fat4 mutations.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Endotelio Linfático/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Cadherinas/deficiencia , Cadherinas/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Células Endoteliales/patología , Endotelio Linfático/patología , Técnica del Anticuerpo Fluorescente , Predisposición Genética a la Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Linfangiectasia Intestinal/patología , Vasos Linfáticos/patología , Linfedema/genética , Linfedema/metabolismo , Linfedema/patología , Ratones Noqueados , Mutación , Fenotipo , Multimerización de Proteína , Transducción de Señal , Transfección , Proteínas Supresoras de Tumor/genética
19.
J Phys Chem A ; 122(8): 2258-2265, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373026

RESUMEN

The electronic structure of complexes formed by the interaction of Be2 with radical ligands (L:Be-Be:L) has been studied by means of the high-level theoretical protocol CCSD(T)/cc-pVTZ. At this level of theory, no matter the nature of the ligand, the Be-Be bond becomes up to 300 times stronger compared to isolated Be2, indicating that these kinds of complexes are thermodynamically stable and, thus, that they could be experimentally detected. Moreover, among all of the ligands considered, the strength of the Be-Be bond for L = [CN]• was calculated to be 330 kJ·mol-1, slightly greater than the strongest up to date L = F• complex, thus setting a new mark for the strongest Be-Be bond reported so far in the literature. Wave function analysis methods explain this strong interaction as a result of the oxidation of the Be2 moiety to Be22+ due to charge transfer toward the L ligands. In this study, we have also considered F:Mg-Mg:F complexes, which show very similar properties as the ones described for the analogous F:Be-Be:F.

20.
Chemistry ; 23(11): 2619-2627, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-27911037

RESUMEN

The photosensitization of DNA by thionucleosides is a promising photo-chemotherapeutic treatment option for a variety of malignancies. DNA metabolization of thionated prodrugs can lead to cell death upon exposure to a low dose of UVA light. The exact mechanisms of thionucleoside phototoxicity are still not fully understood. In this work, we have combined femtosecond broadband transient absorption experiments with state-of-the-art molecular simulations to provide mechanistic insights into the ultrafast and efficient population of the triplet state in the UVA-activated pyrimidine anticancer drug 4-thiothymine. The triplet state is thought to act as a precursor to DNA lesions and the reactive oxygen species responsible for 4-thiothymine photocytotoxicity. The electronic-structure and mechanistic results presented in this contribution reveal key molecular design criteria that can assist in developing alternative chemotherapeutic agents that may overcome some of the primary deficiencies of classical photosensitizers.


Asunto(s)
Antineoplásicos/química , Fármacos Fotosensibilizantes/química , Profármacos/química , Pirimidinas/química , Rayos Ultravioleta , Transporte de Electrón , Transferencia de Energía , Simulación de Dinámica Molecular , Teoría Cuántica , Solventes , Espectrofotometría , Termodinámica , Timidina/análogos & derivados , Timidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA