Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 279: 111819, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33321354

RESUMEN

The benefits provided by tropical rainforests are unevenly distributed throughout the landscape and are shaped by abiotic and biotic components that influence the spatial distribution and functional traits of the species involved. We tested whether environmental stratification of the rainforest in biophysical Landscape Units (LU), defined by topography and soil, is related to the spatial distribution of diversity, abundance and productivity (standing biomass) of tree assemblages that provide potential forest products (PFP). Considering that different PFP are associated with specific plant traits, we also tested whether a phylogenetic signal exists among the species that comprise specific use categories. Non-metric multidimensional scaling ordinations and permutational analysis of variance were based on the frequency, abundance and productivity of 129 species, the PFP of which were classified as fodder, food, fuelwood, medicinal, melliferous, ornamental, plywood and timber in 15 plots of 0.5 ha each. We constructed a phylogenetic tree of the studied species and analyzed the phylogenetic signal strength (D-statistic) among them. The spatial distribution of diversity and abundance of useful species changes among the LU. Specific PFP can be provided in contrasting habitat conditions, but generally not by the same species. The PFP categories that presented a phylogenetic signal were associated with wood characteristics (fuelwood and plywood) and the palatability of the leaves and reproductive structures (fodder). The Moraceae family was significantly related to fodder and plywood, whereas Meliaceae, Myrtaceae and Sapotaceae were mostly used for fuelwood. The medicinal species presented convergent traits distributed throughout the phylogeny. However, since our study included a broad variety of plant structures, it is possible that phylogenetic dispersion can change if we consider the specific uses within each category. Our findings show that the assemblages of PFP suppliers can be clustered through biophysical units based on soil and topography, and specific categories of PFP are often supplied by phylogenetically related species. This knowledge is fundamental in order to incorporate the high diversity of tree species and their potential uses into productive reforestation and agroforestry programs.


Asunto(s)
Biodiversidad , Bosque Lluvioso , Ecosistema , Bosques , Filogenia
2.
Oecologia ; 189(1): 159-169, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30411150

RESUMEN

In tropical dry forests, a high interspecific variation in the strategies of fruiting phenology has been documented. Therefore, phenological responses may be mediated by influence of environmental variables, functional plant attributes or phylogenetic inertia. During 2 years, we recorded the fruiting phenology of 151 species belonging to 5 different growth forms of a Neotropical dry forest in Mexico. We evaluated the relationships between fruiting phenology, abiotic factors (precipitation, temperature, day-length) and functional attributes (growth form, dispersal syndrome, size and time for fruit development) using phylogenetic least squares models (PGLS). More species had ripe fruits during the dry season (92%) than during rainy months and dispersed their seeds by autochory and endozoochory. We found that fruit development time was positively correlated with fruit size and together the morphological fruit traits (size and dispersal syndrome) showed an important relationship with the growth form, but with a strong phylogenetic signal. Environmental seasonality had a strong influence on fruit ripening time, without a relevant association to the phylogeny of plant species. However, the phenological response to the environment (rainfall and day-length) at the community level was mediated by growth form. In woody species, we documented a high interspecific fruiting variation linked with the different dispersal syndromes. In herbaceous species, fruiting phenology is a trait restricted by the duration of their life cycle by rainfall seasonality, which in turn might have selected some traits (e.g., dry fruit, presence of spines, explosive dehiscence) for maximizing seed dispersal during the dry season.


Asunto(s)
Frutas , Dispersión de Semillas , Bosques , México , Filogenia
3.
Am J Bot ; 104(1): 39-49, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28031168

RESUMEN

PREMISE OF THE STUDY: Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. METHODS: We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. KEY RESULTS: We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. CONCLUSIONS: Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community.


Asunto(s)
Flores/fisiología , Bosques , Polinización/fisiología , Clima Tropical , Flores/crecimiento & desarrollo , México , Filogenia , Plantas/clasificación , Plantas/genética , Lluvia , Estaciones del Año , Especificidad de la Especie , Temperatura , Factores de Tiempo
4.
Ecol Evol ; 14(6): e11456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895569

RESUMEN

The decline of honey bee populations significantly impacts the human food supply due to poor pollination and yield decreases of essential crop species. Given the reduction of pollinators, research into critical landscape components, such as floral resource availability and land use change, might provide valuable information about the nutritional status and health of honey bee colonies. To address this issue, we examine the effects of landscape factors like agricultural area, urban area, and climatic factors, including maximum temperature, minimum temperature, relative humidity, and precipitation, on honey bee hive populations and nutritional health of 326 honey bee colonies across varying landscapes in Mexico. DNA metabarcoding facilitated the precise identification of pollen from 267 plant species, encompassing 243 genera and 80 families, revealing a primary herb-based diet. Areas characterized by high landscape diversity exhibited greater pollen diversity within the colony. Conversely, colonies situated in regions with higher proportions of agricultural and urban landscapes demonstrated lower bee density. The maximum ambient temperature outside hives positively correlated with pollen diversity, aligning with a simultaneous decrease in bee density. Conversely, higher relative humidity positively influenced both the bee density of the colony and the diversity of foraged pollen. Our national-level study investigated pollen dietary availability and colony size in different habitat types, latitudes, climatic conditions, and varied levels and types of disturbances. This effort was taken to gain a better insight into the mechanisms driving declines in honey bee populations. This study illustrates the need for more biodiverse agricultural landscapes, the preservation of diverse habitats, and the conservation of natural and semi-natural spaces. These measures can help to improve the habitat quality of other bee species, as well as restore essential ecosystem processes, such as pollination and pest control.

5.
PLoS One ; 15(4): e0231526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298323

RESUMEN

In tropical dry forests, although seed germination and seedling establishment are in general limited by the seasonal availability of water, high interspecific variability, nonetheless, exists in terms of seedling traits and germination dynamics. Differences among species in seed germination and seedling traits may be related to other plant life-history traits, such that assessing these relationships may increase our understanding of factors influencing plant establishment, which would affect the regeneration pathways of tropical dry forest communities. In this study, taking into consideration the effect species' phylogeny, we evaluated the relationships of seed germination metrics (percentage, lag time, and rate of germination) and seedling types (i.e. cotyledons functional morphology), with plant life-history traits (growth form, seed mass, dispersal syndrome and dispersal phenology) for 110 species in a Neotropical dry forest in Mexico. A total of 92% of the species studied disperse their seeds during the dry season, mainly at the beginning of this season (66%), a strategy mostly associated with autochorous herbs. Seed germination was more frequent in species that dispersed seeds at the end of the dry season. Germination percentage was not related to any of the traits studied. However, germination lag time and rate were negatively related to seed mass, a trait that in turn depended on growth form and dispersal syndrome. The dominant seedling type in the community was phanerocotylar epigeal with foliaceous cotyledons (56%), which was mostly associated with small seed mass and herbaceous growth form. Our results provide evidence that several plant life-history traits explain an important part of the variation in seed germination and seedling characteristics observed among species. Therefore, these plant life-history traits may be useful for grouping species in terms of their establishment strategies and roles on the regeneration of tropical dry communities.


Asunto(s)
Bosques , Germinación , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Ecología , Germinación/fisiología , México , Dispersión de Semillas , Factores de Tiempo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA