Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 19(1): e3001062, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395408

RESUMEN

Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.


Asunto(s)
Borrelia burgdorferi/inmunología , Cardiomiopatías/etiología , Memoria Inmunológica , Enfermedad de Lyme/inmunología , Macrófagos/fisiología , Animales , Cardiomiopatías/inmunología , Cardiomiopatías/microbiología , Cardiomiopatías/patología , Células Cultivadas , Endocarditis Bacteriana/complicaciones , Endocarditis Bacteriana/inmunología , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/patología , Femenino , Células HEK293 , Corazón/microbiología , Humanos , Enfermedad de Lyme/patología , Activación de Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/microbiología , Miocitos Cardíacos/patología , Células RAW 264.7
3.
Nature ; 547(7661): 109-113, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658205

RESUMEN

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Complejos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosilmetionina Descarboxilasa/inmunología , Animales , Proliferación Celular , Activación Enzimática , Everolimus/uso terapéutico , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Estabilidad Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216346

RESUMEN

Absent in melanoma 2 (AIM2) is a cytosolic dsDNA sensor that has been broadly studied for its role in inflammasome assembly. However, little is known about the function of AIM2 in adaptive immune cells. The purpose of this study was to investigate whether AIM2 has a cell-intrinsic role in CD4+ T cell differentiation or function. We found that AIM2 is expressed in both human and mouse CD4+ T cells and that its expression is affected by T cell receptor (TCR) activation. Naïve CD4+ T cells from AIM2-deficient (Aim2-/-) mice showed higher ability to maintain forkhead box P3 (FOXP3) expression in vitro, while their capacity to differentiate into T helper (Th)1, Th2 or Th17 cells remained unaltered. Transcriptional profiling by RNA sequencing showed that AIM2 might affect regulatory T cell (Treg) stability not by controlling the expression of Treg signature genes, but through the regulation of the cell's metabolism. In addition, in a T cell transfer model of colitis, Aim2-/--naïve T cells induced less severe body weight loss and displayed a higher ability to differentiate into FOXP3+ cells in vivo. In conclusion, we show that AIM2 function is not confined to innate immune cells but is also important in CD4+ T cells. Our data identify AIM2 as a regulator of FOXP3+ Treg cell differentiation and as a potential intervention target for restoring T cell homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Linfocitos T Reguladores/metabolismo , Adulto , Animales , Diferenciación Celular/fisiología , Colitis/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inflamasomas/metabolismo , Activación de Linfocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Th17/metabolismo
5.
J Proteome Res ; 19(6): 2419-2428, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380831

RESUMEN

Prostate cancer is the second most common tumor and the fifth cause of cancer-related death among men worldwide. PC cells exhibit profound signaling and metabolic reprogramming that account for the acquisition of aggressive features. Although the metabolic understanding of this disease has increased in recent years, the analysis of such alterations through noninvasive methodologies in biofluids remains limited. Here, we used NMR-based metabolomics on a large cohort of urine samples (more than 650) from PC and benign prostate hyperplasia (BPH) patients to investigate the molecular basis of this disease. Multivariate analysis failed to distinguish between the two classes, highlighting the modest impact of prostate alterations on urine composition and the multifactorial nature of PC. However, univariate analysis of urine metabolites unveiled significant changes, discriminating PC from BPH. Metabolites with altered abundance in urine from PC patients revealed changes in pathways related to cancer biology, including glycolysis and the urea cycle. We found out that metabolites from such pathways were diminished in the urine from PC individuals, strongly supporting the notion that PC reduces nitrogen and carbon waste in order to maximize their usage in anabolic processes that support cancer cell growth.


Asunto(s)
Nitrógeno , Neoplasias de la Próstata , Carbono , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/diagnóstico , Espectroscopía de Protones por Resonancia Magnética
6.
Methods ; 77-78: 25-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25697760

RESUMEN

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.


Asunto(s)
Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/biosíntesis , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/biosíntesis , Animales , Humanos , Masculino , Ratones , Mutación/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Supresoras de Tumor/genética
7.
Amino Acids ; 47(12): 2659-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26233761

RESUMEN

Full sets of proteins that are transported to the extracellular space, called secretomes, have been studied for a variety of organisms to understand their potential role in crucial metabolic pathways and complex health conditions. However, there is a lack of tools for integrative classical analysis of secretomes that consider all the data sources available nowadays. Thus, PECAS (Prokaryotic and Eukaryotic Classical Analysis of Secretome) has been developed to provide a well-established prediction pipeline on secreted proteins for prokaryote and eukaryote species.


Asunto(s)
Eucariontes/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Algoritmos , Animales , Proteínas Bacterianas/metabolismo , Biología Computacional , Reacciones Falso Positivas , Humanos , Internet , Redes y Vías Metabólicas , Señales de Clasificación de Proteína , Especificidad de la Especie
8.
Amino Acids ; 46(2): 471-3, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24370983

RESUMEN

The secretome (full set of secreted proteins) has been studied in multiple fungal genomes to elucidate the potential role of those protein collections involved in a number of metabolic processes from host infection to wood degradation. Being aminoacid composition a key factor to recognize secretory proteins, SECRETOOL comprises a group of web tools that enable secretome predictions out of aminoacid sequence files, up to complete fungal proteomes, in one step. SECRETOOL is freely available on the web at http://genomics.cicbiogune.es/SECRETOOL/Secretool.php .


Asunto(s)
Proteínas Fúngicas/química , Proteoma/química , Programas Informáticos , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Proteómica , Análisis de Secuencia de Proteína
10.
Front Immunol ; 12: 709164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489960

RESUMEN

Operational tolerance after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. We performed genome-wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney transplant recipients with chronic rejection and operational tolerance from the Genetic Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results showed that both clinical stages diverge in 2737 genes, indicating that each one has a specific methylation signature associated with transplant outcome. We also observed that tolerance is associated with demethylation in genes involved in immune function, including B and T cell activation and Th17 differentiation, while in chronic rejection it is associated with intracellular signaling and ubiquitination pathways. Using co-expression network analysis, we selected 12 genomic regions that are specifically hypomethylated or hypermethylated in tolerant patients. Analysis of these genes in transplanted patients with low dose of steroids showed that these have a similar methylation signature to that of tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror the immune status associated with transplant outcome and provides a starting point for understanding the epigenetic mechanisms associated with tolerance.


Asunto(s)
Metilación de ADN , Trasplante de Riñón , Tolerancia al Trasplante , Adulto , Anciano , Anciano de 80 o más Años , Rechazo de Injerto , Humanos , Terapia de Inmunosupresión , Trasplante de Riñón/efectos adversos , Persona de Mediana Edad , Células Th17/inmunología , Adulto Joven
11.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34503116

RESUMEN

Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.

12.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932846

RESUMEN

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.

13.
Front Cell Dev Biol ; 8: 613583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511119

RESUMEN

Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.

14.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32219437

RESUMEN

Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.


Asunto(s)
Neoplasias de la Próstata/enzimología , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Epitelio/enzimología , Epitelio/patología , Células HEK293 , Heterocigoto , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas Mutantes/metabolismo , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/metabolismo , Próstata/enzimología , Próstata/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Cancer Res ; 79(24): 6153-6165, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594836

RESUMEN

The PPARγ coactivator 1 alpha (PGC1α) is a prostate tumor suppressor that controls the balance between anabolism and catabolism. PGC1A downregulation in prostate cancer is causally associated with the development of metastasis. Here we show that the transcriptional complex formed by PGC1α and estrogen-related receptor 1 alpha (ERRα) controls the aggressive properties of prostate cancer cells. PGC1α expression significantly decreased migration and invasion of various prostate cancer cell lines. This phenotype was consistent with remarkable cytoskeletal remodeling and inhibition of integrin alpha 1 and beta 4 expression, both in vitro and in vivo. CRISPR/Cas9-based deletion of ERRα suppressed PGC1α regulation of cytoskeletal organization and invasiveness. Mechanistically, PGC1α expression decreased MYC levels and activity prior to inhibition of invasiveness. In addition, PGC1α and ERRα associated at the MYC promoter, supporting the inhibitory activity PGC1α. The inverse correlation between PGC1α-ERRα activity and MYC levels was corroborated in multiple prostate cancer datasets. Altogether, these results support that PGC1α-ERRα functions as a tumor-suppressive transcriptional complex through the regulation of metabolic and signaling events. SIGNIFICANCE: These findings describe how downregulation of the prostate tumor suppressor PGC1 drives invasiveness and migration of prostate cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-myc/genética , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Conjuntos de Datos como Asunto , Humanos , Masculino , Invasividad Neoplásica/genética , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/patología , Transducción de Señal/genética , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
16.
Cancer Res ; 78(21): 6320-6328, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232219

RESUMEN

With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.Significance: In order to facilitate access of research groups without bioinformatics support to public transcriptomics data, we have developed a free online tool with an easy-to-use interface that allows researchers to obtain quality information in a readily publishable format. Cancer Res; 78(21); 6320-8. ©2018 AACR.


Asunto(s)
Biología Computacional/métodos , Neoplasias/genética , Algoritmos , Gráficos por Computador , Bases de Datos Factuales , Bases de Datos Genéticas , Genómica , Humanos , Internet , Oncología Médica , Proteómica , Programas Informáticos , Transcriptoma , Interfaz Usuario-Computador , Flujo de Trabajo
17.
Oncotarget ; 9(2): 1494-1504, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29416709

RESUMEN

Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer.

18.
Cancer Res ; 78(2): 399-409, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187400

RESUMEN

The nuclear receptor PPAR-ß/δ (PPARD) has essential roles in fatty acid catabolism and energy homeostasis as well as cell differentiation, inflammation, and metabolism. However, its contributions to tumorigenesis are uncertain and have been disputed. Here, we provide evidence of tumor suppressive activity of PPARD in prostate cancer through a noncanonical and ligand-independent pathway. PPARD was downregulated in prostate cancer specimens. In murine prostate epithelium, PPARD gene deletion resulted in increased cellularity. Genetic modulation of PPARD in human prostate cancer cell lines validated the tumor suppressive activity of this gene in vitro and in vivo Mechanistically, PPARD exerted its activity in a DNA binding-dependent and ligand-independent manner. We identified a novel set of genes repressed by PPARD that failed to respond to ligand-mediated activation. Among these genes, we observed robust regulation of the secretory trefoil factor family (TFF) members, including a causal and correlative association of TFF1 with prostate cancer biology in vitro and in patient specimens. Overall, our results illuminate the oncosuppressive function of PPARD and understanding of the pathogenic molecular pathways elicited by this nuclear receptor.Significance: These findings challenge the presumption that the function of the nuclear receptor PPARß/δ in cancer is dictated by ligand-mediated activation. Cancer Res; 78(2); 399-409. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , PPAR delta/metabolismo , Neoplasias de la Próstata/patología , Factor Trefoil-1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Regulación hacia Abajo , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , PPAR delta/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factor Trefoil-1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Database (Oxford) ; 2017(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28365718

RESUMEN

Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. Database URL: VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php.


Asunto(s)
Bases de Datos de Proteínas , Genoma , Proteoma/genética , Proteoma/metabolismo , Vertebrados/genética , Animales , Vertebrados/metabolismo
20.
Oncotarget ; 7(6): 6835-46, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26771841

RESUMEN

Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Cadherinas/genética , Cadherinas/orina , Vesículas Extracelulares/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/orina , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA