Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Exp Immunol ; 209(3): 305-310, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35732270

RESUMEN

Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme involved in the modulation of critical inflammatory pathways as well as in cancer progression. Auto-antibodies against GSTO1-1 were detected in the serum of patients with esophageal squamous cell carcinoma and were proposed as potential biomarkers in the early detection of the disease. Our findings show that anti-GSTO1-1 antibodies can be found in a variety of inflammatory diseases, including autoimmune rheumatoid arthritis, infectious SARS-CoV-2, and trichinellosis. Our findings strongly suggest that anti-GSTO1-1 antibodies may be a marker of tissue damage/inflammation rather than a specific tumor-associated biomarker.


Asunto(s)
COVID-19 , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Biomarcadores de Tumor , Glutatión Transferasa , Humanos , Inflamación , SARS-CoV-2
2.
Biol Chem ; 398(12): 1267-1293, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28822219

RESUMEN

Decades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called 'redox regulation' of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of protein S-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particular S-glutathionylation, S-cysteinylglycinylation and S-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by protein S-nitrosations and S-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Glutatión/metabolismo , Óxido Nítrico/metabolismo , Nitrosación , Animales , Humanos
4.
Biomarkers ; 21(5): 441-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27027926

RESUMEN

Context Four gamma-glutamyltransferase (GGT) fractions with different molecular weights (big-, medium-, small- and free-GGT) are detectable in human plasma. Objective Verify if liver cells can release all four GGT fractions and if the spatial cell organization influences their release. Methods Hepatoma (HepG2) and melanoma (Me665/2/60) cells were cultured as monolayers or spheroids. GGT released in culture media was analysed by gel-filtration chromatography. Results HepG2 and Me665/2/60 monolayers released the b-GGT fraction, while significative levels of s-GGT and f-GGT were detectable only in media of HepG2-spheroids. Bile acids alone or in combination with papain promoted the conversion of b-GGT in s-GGT or f-GGT, respectively. Conclusions GGT is usually released as b-GGT, while s-GGT and f-GGT are likely to be produced in the liver extracellular environment by the combined action of bile acids and proteases.


Asunto(s)
Hígado/citología , Hígado/enzimología , gamma-Glutamiltransferasa/biosíntesis , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Cromatografía en Gel , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Melanoma/enzimología , Melanoma/metabolismo , Melanoma/patología , Peso Molecular , gamma-Glutamiltransferasa/metabolismo
5.
Thromb J ; 14: 45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822142

RESUMEN

BACKGROUND: Besides maintaining intracellular glutathione stores, gamma-glutamyltransferase(GGT) generates reactive oxygen species and activates NFkB, a redox-sensitive transcription factor key in the induction of Tissue Factor (TF) gene expression, the principal initiator of the clotting cascade. Thus, GGT might be involved in TF-mediated coagulation processes, an assumption untested insofar. METHODS: Experiments were run with either equine, enzymatically active GGT or human recombinant (hr) GGT, a wheat germ-derived protein enzymatically inert because of missing post-translational glycosylation. TF Procoagulant Activity (PCA, one-stage clotting assay), TF antigen(ELISA) and TFmRNA(real-time PCR) were assessed in unpooled human peripheral blood mononuclear cell(PBMC) suspensions obtained from healthy donors through discontinuous Ficoll/Hystopaque density gradient. RESULTS: Equine GGT increased PCA, an effect insensitive to GGT inhibition by acivicin suggesting mechanisms independent of its enzymatic activity, a possibility confirmed by the maintained stimulation in response to hrGGT, an enzymatically inactive molecule. Endotoxin(LPS) contamination of GGT preparations was excluded by heat inactivation studies and direct determination(LAL method) of LPS concentrations <0.1 ng/mL practically devoid of procoagulant effect. Inhibition by anti-GGT antibodies corroborated that conclusion. Upregulation by hrGGT of TF antigen and mRNA and its downregulation by BAY-11-7082, a NFkB inhibitor, and N-acetyl-L-cysteine, an antioxidant, was consistent with a NFkB-driven, redox-sensitive transcriptional site of action. CONCLUSIONS: GGT upregulates TF expression independent of its enzymatic activity, a cytokine-like behaviour mediated by NFκB activation, a mechanism contributing to promote acute thrombotic events, a possibility in need, however, of further evaluation.

6.
Proteins ; 83(4): 612-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25619915

RESUMEN

Inhibitor of Apoptosis Proteins (IAPs) are the target of extensive research in the field of cancer therapy since they regulate apoptosis and cell survival. Smac-mimetics, the most promising IAP-targeting compounds specifically recognize the IAP-BIR3 domain and promote apoptosis, competing with caspases for IAP binding. Furthermore, Smac-mimetics interfere with the NF-κB survival pathway, inducing cIAP1 and cIAP2 degradation through an auto-ubiquitination process. It has been shown that the XIAP-BIR1 (X-BIR1) domain is involved in the interaction with TAB1, an upstream adaptor for TAK1 kinase activation, which in turn couples with the NF-κB survival pathway. Preventing X-BIR1 dimerization abolishes XIAP-mediated NF-κB activation, thus implicating a proximity-induced mechanism for TAK1 activation. In this context, in a systematic search for a molecule capable of impairing X-BIR1/TAB1 assembly, we identified the compound NF023. Here we report the crystal structure of the human X-BIR1 domain in the absence and in the presence of NF023, as a starting concept for the design of novel BIR1-specific compounds acting synergistically with existing pro-apoptotic drugs in cancer therapy.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/química , Proteínas Inhibidoras de la Apoptosis/metabolismo , Suramina/análogos & derivados , Cristalización , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Suramina/química , Suramina/metabolismo
7.
J Transl Med ; 13: 325, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26463174

RESUMEN

BACKGROUND: Gamma-glutamyltransferase (GGT) is a well-established independent risk factor for cardiovascular mortality related to atherosclerotic disease. Four GGT fractions have been identified in plasma, but only b-GGT fraction accumulates in atherosclerotic plaques, and correlates with other histological markers of vulnerability. The present study was aimed to evaluate whether macrophagic lineage cells may provide a source of b-GGT within the atherosclerotic plaque. METHODS: GGT expression and release were studied in human monocytes isolated from peripheral blood of healthy donors. The growth factors GM-CSF and M-CSF were used to induce differentiation into M1-like and M2-like macrophages, respectively. Plaque GGT was investigated in tissue samples obtained from patients undergoing carotid endoarterectomy. RESULTS: We found that M1-like macrophages express higher levels of GGT as compared to M2-like, and that both monocytes and M1-like macrophages-but not M2-like-are able to release the b-GGT fraction upon activation with pro-inflammatory stimuli. Western blot analysis of b-GGT extracted from plaques confirmed the presence of a GGT immunoreactive peptide coincident with that of macrophages. CONCLUSIONS: Our data indicate that macrophages characterized by a pro-inflammatory phenotype may contribute to intra-plaque accumulation of b-GGT, which in turn may play a role in the progression of atherosclerosis by modulating inflammatory processes and favouring plaque instability.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/metabolismo , Monocitos/metabolismo , Placa Aterosclerótica/enzimología , gamma-Glutamiltransferasa/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatografía en Gel , Progresión de la Enfermedad , Endarterectomía Carotidea , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Voluntarios Sanos , Humanos , Inflamación , Leucocitos Mononucleares/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Microcirculación , Fenotipo
8.
Arch Biochem Biophys ; 562: 80-91, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25135357

RESUMEN

A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-ß, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1ß, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.


Asunto(s)
Citocinas/metabolismo , Inflamación/tratamiento farmacológico , S-Nitrosoglutatión/farmacología , Aldehído Oxidorreductasas/metabolismo , Animales , Antiinflamatorios/farmacología , Quimiocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteína Disulfuro Isomerasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , gamma-Glutamiltransferasa/metabolismo
9.
Mol Pharm ; 11(5): 1500-11, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24654974

RESUMEN

γ-Glutamyltransferase (γGT) is a cell surface enzyme that catalyzes hydrolysis of the bond linking the glutamate and cysteine residues of glutathione and glutathione-S-conjugates. We have observed that human pancreatic tumor cells and tumor-associated stellate cells express high levels of this enzyme when compared to normal pancreatic epithelial and stellate cells. Detection of the protein in tumor sections correlated with γGT activity on the surface of the cultured tumor and stellate cells. We tested whether the tumor γGT could be employed to deliver a therapeutic to the tumor endothelial cells. GSAO is a glutathione-S-conjugate of a trivalent arsenical that is activated to enter endothelial cells by γGT cleavage of the γ-glutamyl residue. The arsenical moiety triggers proliferation arrest and death of the endothelial cells by targeting the mitochondria. Human pancreatic tumor and stellate cell γGT activated GSAO in culture and γGT activity positively correlated with GSAO-mediated proliferation arrest and death of endothelial cells in Transwell and coculture systems. A soluble form of γGT is found in blood, and we measured the rate of activation of GSAO by this enzyme. We calculated that systemically administered GSAO would circulate through the pancreatic blood supply several times before appreciable activation by normal blood levels of γGT. In support of this finding, tumor γGT activity positively correlated with GSAO-mediated inhibition of pancreatic tumor angiogenesis and tumor growth in mice. Our findings indicate that pancreatic tumor γGT can be used to deliver a therapeutic to the tumor.


Asunto(s)
gamma-Glutamiltransferasa/sangre , gamma-Glutamiltransferasa/metabolismo , Animales , Arsenicales/química , Arsenicales/metabolismo , Línea Celular , Portadores de Fármacos/metabolismo , Femenino , Glutatión/química , Glutatión/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Profármacos/administración & dosificación , Profármacos/metabolismo , Profármacos/uso terapéutico
10.
J Funct Biomater ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921520

RESUMEN

The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, ß-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants.

11.
Free Radic Biol Med ; 224: 162-167, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197596

RESUMEN

Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.

12.
Mol Cell Endocrinol ; 592: 112294, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838763

RESUMEN

The aim of the present research was to explore the mechanisms underlying the role of dopamine in the regulation of insulin secretion in beta cells. The effect of dopamine on insulin secretion was investigated on INS 832/13 cell line upon glucose and other secretagogues stimulation. Results show that dopamine significantly inhibits insulin secretion stimulated by both glucose and other secretagogues, while it has no effect on the basal secretion. This effect requires the presence of dopamine during incubation with the various secretagogues. Both electron microscopy and immunohistochemistry indicate that in beta cells the D2 dopamine receptor is localized within the insulin granules. Blocking dopamine entry into the insulin granules by inhibiting the VMAT2 transporter with tetrabenazine causes a significant increase in ROS production. Our results confirm that dopamine plays an important role in the regulation of insulin secretion by pancreatic beta cells through a regulated and precise compartmentalization mechanisms.


Asunto(s)
Comunicación Autocrina , Dopamina , Glucosa , Secreción de Insulina , Células Secretoras de Insulina , Insulina , Proteínas de Transporte Vesicular de Monoaminas , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Dopamina/metabolismo , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratas , Glucosa/metabolismo , Comunicación Autocrina/efectos de los fármacos , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Dopamina D2/metabolismo , Línea Celular , Tetrabenazina/farmacología , Tetrabenazina/análogos & derivados
13.
Int J Bioprint ; 9(5): 771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457929

RESUMEN

Biological tissues possess a high degree of structural complexity characterized by curvature and stratification of different tissue layers. Despite recent advances in in vitro technology, current engineering solutions do not comprise both of these features. In this paper, we present an integrated in silico-in vitro strategy for the design and fabrication of biological barriers with controlled curvature and architecture. Analytical and computational tools combined with advanced bioprinting methods are employed to optimize living inks for bioprinting-structured core-shell constructs based on alginate. A finite element model is used to compute the hindered diffusion and crosslinking phenomena involved in the formation of core-shell structures and to predict the width of the shell as a function of material parameters. Constructs with a solid alginate-based shell and a solid, liquid, or air core can be reproducibly printed using the workflow. As a proof of concept, epithelial cells and fibroblasts were bioprinted respectively in a liquid core (10 mg/mL Pluronic) and in a solid shell (20 mg/mL alginate plus 20 mg/mL gelatin, used for providing the cells with adhesive moieties). These constructs had a roundness of 97.6% and an average diameter of 1500 ±136 µm. Moreover, their viability was close to monolayer controls (74.12% ± 22.07%) after a week in culture, and the paracellular transport was twice that of cell-free constructs, indicating cell polarization.

14.
Biofactors ; 49(2): 405-414, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36468437

RESUMEN

Ferroptosis is a form of regulated cell death (RCD) characterized by intracellular iron ion accumulation and reactive oxygen species (ROS)-induced lipid peroxidation. Ferroptosis in cancer and ferroptosis-related anticancer drugs have recently gained interest in the field of cancer treatment. Boron is an essential trace element playing an important role in several biological processes. Recent studies have described contrasting effects of boric acid (BA) in cancer cells, ranging from protective/mitogenic to damaging/antiproliferative. Interestingly, boron has been shown to interfere with critical factors involved in ferroptosis-intracellular glutathione and lipid peroxidation in the first place. Thus, the present study was aimed to verify the ability of boron to modulate the ferroptotic process in HepG2 cells, a model of hepatocellular carcinoma. Our results indicate that-when used at high, pharmacological concentrations-BA can increase intracellular ROS, glutathione, and TBARS levels, and enhance ferroptosis induced by RSL3 and erastin. Also, high BA concentrations can directly induce ferroptosis, and such BA-induced ferroptosis can add to the cytotoxic effects of anticancer drugs sorafenib, doxorubicin and cisplatin. These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions. However, the possibility of reaching suitably high concentrations of BA in the tumor microenvironment will need to be further investigated.


Asunto(s)
Antineoplásicos , Ferroptosis , Neoplasias Hepáticas , Humanos , Muerte Celular , Especies Reactivas de Oxígeno/metabolismo , Boro/farmacología , Boro/uso terapéutico , Peroxidación de Lípido , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Glutatión/metabolismo , Microambiente Tumoral
15.
Antioxidants (Basel) ; 12(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37372032

RESUMEN

Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.

16.
J Funct Biomater ; 14(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826858

RESUMEN

INTRODUCTION: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin ß-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS: None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.

17.
Front Oncol ; 12: 920316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669424

RESUMEN

Cisplatin (CDDP) is currently employed for the treatment of several solid tumors, but cellular heterogeneity and the onset of drug resistance dictate that suitable biomarkers of CDDP sensitivity are established. Studies on triple-negative breast cancer (TNBC) have recently confirmed the involvement of gamma-glutamyltransferase 1 (GGT1), whose enzyme activity expressed at the cell surface favors the cellular resupply of antioxidant glutathione (GSH) thus offering cancer cells protection against the prooxidant effects of CDDP. However, an additional well-established mechanism depends on GGT1-mediated matabolism of extracellular GSH. It was in fact shown that glycyl-cysteine - the dipeptide originated by GGT1-mediated GSH metabolism at the cell surface - can promptly form adducts with exogenous CDDP, thus hindering its access to the cell, interactions with DNA and overall cytotoxicity. Both mechanisms: mainainance of intracellular GSH levels plus extracellular CDDP detoxication are likely concurring to determine GGT1-dependent CDDP resistance.

18.
J Funct Biomater ; 13(4)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36547525

RESUMEN

INTRODUCTION: The UVC-irradiation ("UV-photofunctionalization") of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. OBJECTIVE: The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. METHODOLOGY: The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. RESULTS: The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). CONCLUSION: Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells.

19.
Antioxidants (Basel) ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810295

RESUMEN

Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of "foam cells" within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.

20.
J Clin Med ; 10(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34362227

RESUMEN

Modeling the physiology of the human placenta is still a challenge, despite the great number of scientific advancements made in the field. Animal models cannot fully replicate the structure and function of the human placenta and pose ethical and financial hurdles. In addition, increasingly stricter animal welfare legislation worldwide is incentivizing the use of 3R (reduction, refinement, replacement) practices. What efforts have been made to develop alternative models for the placenta so far? How effective are they? How can we improve them to make them more predictive of human pathophysiology? To address these questions, this review aims at presenting and discussing the current models used to study phenomena at the placenta level: in vivo, ex vivo, in vitro and in silico. We describe the main achievements and opportunities for improvement of each type of model and critically assess their individual and collective impact on the pursuit of predictive studies of the placenta in line with the 3Rs and European legislation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA