RESUMEN
In this article we describe the identification of unprecedented ATP-competitive ChoKα inhibitors starting from initial hit NMS-P830 that binds to ChoKα in an ATP concentration-dependent manner. This result is confirmed by the co-crystal structure of NMS-P830 in complex with Δ75-ChoKα. NMS-P830 is able to inhibit ChoKα in cells resulting in the reduction of intracellular phosphocholine formation. A structure-based medicinal chemistry program resulted in the identification of selective compounds that have good biochemical activity, solubility and metabolic stability and are suitable for further optimization. The ChoKα inhibitors disclosed in this article demonstrate for the first time the possibility to inhibit ChoKα with ATP-competitive compounds.
Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Colina Quinasa/antagonistas & inhibidores , Ciclohexanos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/metabolismo , Colina Quinasa/metabolismo , Ciclohexanos/síntesis química , Ciclohexanos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-ActividadRESUMEN
Cancer cell survival is frequently dependent on the elevated levels of members of the Bcl-2 family of prosurvival proteins that bind to and inactivate BH3-domain pro-apoptotic cellular proteins. Small molecules that inhibit the protein-protein interactions between prosurvival and proapoptotic Bcl-2 family members (so-called "BH3 mimetics") have a potential therapeutic value, as indicated by clinical findings obtained with ABT-263 (navitoclax), a Bcl-2/Bcl-xL antagonist, and more recently with GDC-0199/ABT-199, a more selective antagonist of Bcl-2. Here, we report study results of the functional role of the prosurvival protein Mcl-1 against a panel of solid cancer cell lines representative of different tumor types. We observed silencing of Mcl-1 expression by small interfering RNAs (siRNAs) significantly reduced viability and induced apoptosis in almost 30% of cell lines tested, including lung and breast adenocarcinoma, as well as glioblastoma derived lines. Most importantly, we provide a mechanistic basis for this sensitivity by showing antagonism of Mcl-1 function with specific BH3 peptides against isolated mitochondria induces Bak oligomerization and cytochrome c release, therefore demonstrating that mitochondria from Mcl-1-sensitive cells depend on Mcl-1 for their integrity and that antagonizing Mcl-1 function is sufficient to induce apoptosis. Thus, our results lend further support for considering Mcl-1 as a therapeutic target in a number of solid cancers and support the rationale for development of small molecule BH3-mimetics antagonists of this protein.
Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genéticaRESUMEN
Antibiotics blocking bacterial cell wall assembly (beta-lactams and glycopeptides) are facing a challenge from the progressive spread of resistant pathogens. Lantibiotics are promising candidates to alleviate this problem. Microbisporicin, the most potent antibacterial among known comparable lantibiotics, was discovered during a screening applied to uncommon actinomycetes. It is produced by Microbispora sp. as two similarly active and structurally related polypeptides (A1, 2246-Da and A2, 2230-Da) of 24 amino acids linked by 5 intramolecular thioether bridges. Microbisporicin contains two posttranslational modifications that have never been reported previously in lantibiotics: 5-chloro-trypthopan and mono- (in A2) or bis-hydroxylated (in A1) proline. Consistent with screening criteria, microbisporicin selectively blocks peptidoglycan biosynthesis, causing cytoplasmic UDP-linked precursor accumulation. Considering its spectrum of activity and its efficacy in vivo, microbisporicin represents a promising antibiotic to treat emerging infections.
Asunto(s)
Actinomycetales/efectos de los fármacos , Antibacterianos/farmacología , Bacteriocinas/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Péptidos/farmacología , Actinomycetales/química , Actinomycetales/metabolismo , Secuencia de Aminoácidos , Antibacterianos/química , Bacteriocinas/química , Farmacorresistencia Bacteriana Múltiple/fisiología , Datos de Secuencia Molecular , Péptidos/química , Peptidoglicano/biosíntesis , Prolina/análogos & derivados , Prolina/farmacología , Triptófano/análogos & derivados , Triptófano/farmacologíaRESUMEN
The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity.
Asunto(s)
Antineoplásicos/química , Isoindoles/química , Piperidinas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Disponibilidad Biológica , Proliferación Celular/efectos de los fármacos , Dacarbazina/administración & dosificación , Dacarbazina/análogos & derivados , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Xenoinjertos , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoindoles/administración & dosificación , Isoindoles/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Piperidinas/administración & dosificación , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas Sprague-Dawley , Relación Estructura-Actividad , Temozolomida , Neoplasias de la Mama Triple NegativasRESUMEN
GE 23077 factors A1, A2, B1 and B2 are novel antibiotics isolated from fermentation broths of an Actinomadura sp. strain. GE23077 antibiotics are cyclic peptides, which inhibit Escherichia coli RNA polymerase at nM concentrations. Both rifampicin-sensitive and rifampicin-resistant polymerases are inhibited, whereas E. coli DNA polymerase and wheat germ RNA polymerase are substantially not affected. In spite of the potent activity on the enzyme, the antibiotics generally show poor activity against whole cell bacteria. The spectrum of activity is restricted to Moraxella catarrhalis, including clinical isolates, with partial activity against Neisseria gonorrhoeae and Mycobacterium smegmatis.
Asunto(s)
Antibacterianos/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores de la Síntesis del Ácido Nucleico , Antibacterianos/clasificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Fermentación , Relación Estructura-ActividadRESUMEN
Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as beta-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan biosynthesis inhibitors capable of overcoming these resistance mechanisms. The microbial products were first screened according to their differential activity against Staphylococcus aureus and its L-form. Then, activities insensitive to the addition of a beta-lactamase cocktail or d-alanyl-d-alanine affinity resin were selected. Thirty-five lantibiotics were identified from a library of broth extracts produced by 40,000 uncommon actinomycetes. Five of them showed structural characteristics that did not match with any known microbial metabolite. In this study, we report on the production, structure determination, and biological activity of one of these novel lantibiotics, namely, planosporicin, which is produced by the uncommon actinomycete Planomonospora sp. Planosporicin is a 2194 Da polypeptide originating from 24 proteinogenic amino acids. It contains lanthionine and methyllanthionine amino acids generating five intramolecular thioether bridges. Planosporicin selectively blocks peptidoglycan biosynthesis and causes accumulation of UDP-linked peptidoglycan precursors in growing bacterial cells. On the basis of its mode of action and globular structure, planosporicin can be assigned to the mersacidin (20 amino acids, 1825 Da) and the actagardine (19 amino acids, 1890 Da) subgroup of type B lantibiotics. Considering its spectrum of activity against Gram-positive pathogens of medical importance, including multi-resistant clinical isolates, and its efficacy in vivo, planosporicin represents a potentially new antibiotic to treat emerging pathogens.
Asunto(s)
Actinomycetales/metabolismo , Bacteriocinas/química , Pared Celular/metabolismo , Actinomycetales/química , Secuencia de Aminoácidos , Animales , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/clasificación , Antibacterianos/farmacología , Bacteriocinas/biosíntesis , Bacteriocinas/clasificación , Bacteriocinas/farmacología , Pared Celular/química , Femenino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Péptidos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrolloRESUMEN
In the course of a microbial product screening aimed at the discovery of novel antibiotics acting on bacterial protein synthesis, a complex of three structurally related tetrapeptides, namely, GE81112 factors A, B, and B1, was isolated from a Streptomyces sp. The screening was based on a cell-free assay of bacterial protein synthesis driven by a model mRNA containing natural initiation signals. In this study we report the production, isolation, and structure determination of these novel, potent and selective inhibitors of cell-free bacterial protein synthesis, which stably bind the 30S ribosomal subunit and inhibit the formation of fMet-puromycin. They did not inhibit translation by yeast ribosomes in vitro. Spectroscopic analyses revealed that they are tetrapeptides constituted by uncommon amino acids. While GE81112 factors A, B, and B1 were effective in inhibiting bacterial protein synthesis in vitro, they were less active against Gram-positive and Gram-negative bacterial cells. Cells grown in minimal medium were more susceptible to the compounds than those grown in rich medium, and this is most likely due to competition or regulation by medium components during peptide uptake. The novelty of the chemical structure and of the specific mode of action on the initiation phase of bacterial protein synthesis makes GE81112 a unique scaffold for designing new drugs.
Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Péptidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Streptomyces/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Péptidos/química , Péptidos/metabolismo , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Factores de TiempoRESUMEN
GE23077, a novel microbial metabolite recently isolated from Actinomadura sp. culture media, is a potent and selective inhibitor of bacterial RNA polymerase (RNAP). It inhibits Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) RNAPs with IC50 values (i.e. the concentration at which the enzyme activity is inhibited by 50%) in the 10(-8) m range, whereas it is not active on E. coli DNA polymerase or on eukaryotic (wheat germ) RNAP II (IC50 values > 10(-4) m in both cases). In spite of its potent activity on purified bacterial RNAPs, GE23077 shows a narrow spectrum of antimicrobial activity on Gram-positive and Gram-negative bacteria. To investigate the molecular basis of this behaviour, the effects of GE23077 on macromolecular biosynthesis were tested in E. coli cells permeabilized under different conditions. The addition of GE23077 to plasmolyzed cells resulted in an immediate and specific inhibition of intracellular RNA biosynthesis, in a dose-response manner, strongly suggesting that cell penetration is the main obstacle for effective antimicrobial activity of the antibiotic. Biochemical studies were also conducted with purified enzymes to obtain further insights into the mode of action of GE23077. Interestingly, the compound displays a behaviour similar to that of rifampicin, an antibiotic structurally unrelated to GE23077: both compounds act at the level of transcription initiation, but not on the sigma subunit and not on the formation of the promoter DNA-RNAP complex. Tests on different rifampicin-resistant E. coli RNAPs did not show any cross-resistance between the two compounds, indicating distinct binding sites on the target enzyme. In conclusion, GE23077 is an interesting new molecule for future mechanistic studies on bacterial RNAP and for its potential in anti-infective drug discovery.
Asunto(s)
Actinomycetales/metabolismo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Actinomycetales/química , Aminoglicósidos/farmacología , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Resistencia a Medicamentos , Escherichia coli/enzimología , Escherichia coli/genética , Concentración 50 Inhibidora , Estructura Molecular , Péptidos Cíclicos/química , Rifamicinas/farmacología , Especificidad por Sustrato , Transcripción Genética/efectos de los fármacosRESUMEN
In this study we describe BI-K0058, a new inhibitor of the transcription-termination factor Rho belonging to a different chemical class from bicyclomycin, the only known antibiotic acting on Rho. BI-K0058 inhibits the poly(C)-dependent ATPase activity of Rho with an IC(50) of 25 microM as well as in vitro transcription-termination of two natural substrates, the Salmonella enterica hisG cistron and the f1 phage intergenic region. BI-K0058 does not affect photolabeling of Rho by ATP. The results of gel mobility shift experiments with a natural RNA substrate demonstrate that BI-K0058 inhibits the formation of the ATP-independent high affinity Rho-RNA complex.