Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 15(12): e1008512, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860672

RESUMEN

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Asunto(s)
Aclimatación , Proteínas de Plantas/genética , Poaceae/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Flujo Génico , Genética de Población , Técnicas de Genotipaje , México , Repeticiones de Microsatélite , Fenotipo , Poaceae/clasificación , Poaceae/genética , Polimorfismo de Nucleótido Simple , Selección Genética
2.
PLoS Genet ; 13(3): e1006666, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28301472

RESUMEN

Through the local selection of landraces, humans have guided the adaptation of crops to a vast range of climatic and ecological conditions. This is particularly true of maize, which was domesticated in a restricted area of Mexico but now displays one of the broadest cultivated ranges worldwide. Here, we sequenced 67 genomes with an average sequencing depth of 18x to document routes of introduction, admixture and selective history of European maize and its American counterparts. To avoid the confounding effects of recent breeding, we targeted germplasm (lines) directly derived from landraces. Among our lines, we discovered 22,294,769 SNPs and between 0.9% to 4.1% residual heterozygosity. Using a segmentation method, we identified 6,978 segments of unexpectedly high rate of heterozygosity. These segments point to genes potentially involved in inbreeding depression, and to a lesser extent to the presence of structural variants. Genetic structuring and inferences of historical splits revealed 5 genetic groups and two independent European introductions, with modest bottleneck signatures. Our results further revealed admixtures between distinct sources that have contributed to the establishment of 3 groups at intermediate latitudes in North America and Europe. We combined differentiation- and diversity-based statistics to identify both genes and gene networks displaying strong signals of selection. These include genes/gene networks involved in flowering time, drought and cold tolerance, plant defense and starch properties. Overall, our results provide novel insights into the evolutionary history of European maize and highlight a major role of admixture in environmental adaptation, paralleling recent findings in humans.


Asunto(s)
Adaptación Fisiológica/genética , Genes de Plantas/genética , Fitomejoramiento/métodos , Zea mays/genética , Europa (Continente) , Variación Genética , Genoma de Planta/genética , Geografía , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética , Estados Unidos , Zea mays/clasificación
3.
Plant Physiol ; 157(2): 917-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852416

RESUMEN

Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1-overexpressing leaves led to the identification of three transcripts and 16 proteins up- or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1-overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1-overexpressing leaves, including two BCAAs. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteómica , Estrés Fisiológico , Agua , Zea mays/genética
4.
Front Plant Sci ; 12: 660803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149759

RESUMEN

Even though petals are homoplastic structures, their identity consistently involves genes of the APETALA3 (AP3) lineage. However, the extent to which the networks downstream of AP3 are conserved in species with petals of different evolutionary origins is unknown. In Ranunculaceae, the specificity of the AP3-III lineage offers a great opportunity to identify the petal gene regulatory network in a comparative framework. Using a transcriptomic approach, we investigated putative target genes of the AP3-III ortholog NdAP3-3 in Nigella damascena at early developmental stages when petal identity is determined, and we compared our data with that from selected eudicot species. We generated a de novo reference transcriptome to carry out a differential gene expression analysis between the wild-type and mutant NdAP3-3 genotypes differing by the presence vs. absence of petals at early stages of floral development. Among the 1,620 genes that were significantly differentially expressed between the two genotypes, functional annotation suggested a large involvement of nuclear activities, including regulation of transcription, and enrichment in processes linked to cell proliferation. Comparing with Arabidopsis data, we found that highly conserved genes between the two species are enriched in homologs of direct targets of the AtAP3 protein. Integrating AP3-3 binding site data from another Ranunculaceae species, Aquilegia coerulea, allowed us to identify a set of 18 putative target genes that were conserved between the three species. Our results suggest that, despite the independent evolutionary origin of petals in core eudicots and Ranunculaceae, a small conserved set of genes determines petal identity and early development in these taxa.

5.
Plant Physiol ; 140(1): 349-64, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16377752

RESUMEN

A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities.


Asunto(s)
Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Adaptación Fisiológica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Electroforesis en Gel Bidimensional , Genotipo , Ácidos Indolacéticos/metabolismo , Espectrometría de Masas , Mutación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteómica , Carácter Cuantitativo Heredable , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA