RESUMEN
Implementation of therapeutic in vivo gene editing using CRISPR/Cas relies on potent delivery of gene editing tools. Administration of ribonucleoprotein (RNP) complexes consisting of Cas protein and single guide RNA (sgRNA) offers short-lived editing activity and safety advantages over conventional viral and non-viral gene and RNA delivery approaches. By engineering lentivirus-derived nanoparticles (LVNPs) to facilitate RNP delivery, we demonstrate effective administration of SpCas9 as well as SpCas9-derived base and prime editors (BE/PE) leading to gene editing in recipient cells. Unique Gag/GagPol protein fusion strategies facilitate RNP packaging in LVNPs, and refinement of LVNP stoichiometry supports optimized LVNP yield and incorporation of therapeutic payload. We demonstrate near instantaneous target DNA cleavage and complete RNP turnover within 4 days. As a result, LVNPs provide high on-target DNA cleavage and lower levels of off-target cleavage activity compared to standard RNP nucleofection in cultured cells. LVNPs accommodate BE/sgRNA and PE/epegRNA RNPs leading to base editing with reduced bystander editing and prime editing without detectable indel formation. Notably, in the mouse eye, we provide the first proof-of-concept for LVNP-directed in vivo gene disruption. Our findings establish LVNPs as promising vehicles for delivery of RNPs facilitating donor-free base and prime editing without formation of double-stranded DNA breaks.
RESUMEN
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Asunto(s)
Neoplasias Pulmonares , Sarcoma , Ingravidez , Humanos , Masculino , Femenino , Proteómica , CitoesqueletoRESUMEN
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Asunto(s)
Genómica , Metabolómica , Células Madre , Ingravidez , Humanos , Células Madre/metabolismo , Células Madre/citología , Genómica/métodos , Metabolómica/métodos , Proteómica/métodos , Epigenómica/métodos , Vuelo Espacial , Simulación de Ingravidez , AnimalesRESUMEN
Animal models of choroidal neovascularization (CNV) are extensively used in translational studies of CNV formation and to evaluate angiostatic treatment strategies. However, the current paucity of large animal models compared with rodent models constitutes a knowledge gap regarding the clinical translation of findings. Ocular anatomical and physiological similarities to humans suggest the pig as a relevant model animal. Thus, a systematic survey of porcine CNV models was performed to identify pertinent model parameters and suggest avenues for model standardization and optimization. A systematic search was performed in PubMed and EMBASE on November 28, 2022 for porcine models of CNV. Following inclusion by two investigators, data from the articles were extracted according to a predefined protocol. A total of 14 articles, representing 19 independent porcine CNV models were included. The included models were almost equally divided between laser-induced (53%) and surgically-induced (47%) models. Different specified breeds of domestic pigs (71%) were most commonly used in the studies. All studies used normal animals. Female pigs were reported used in 43% of the studies, while 43% did not report on sex of the animals. Younger pigs were typically used. The surgical models reported consistent CNV induction following mechanical Bruch's membrane rupture. The laser models used variants of the infrared diode laser (40%) or the frequency-doubled Nd:YAG laser (50%). Both lasers enabled successful CNV induction with reported induction rates ranging from 60 to 100%. Collateral damage to the neuroretina was reported for the infrared diode laser. CNV evaluation varied across studies with fluorescein angiography (50%) as the most used in vivo method and retinal sections (71%) as the most used ex vivo method. In interventional studies, quantification of lesions was in general performed between 7 and 14 days. The field of porcine CNV models is relatively small and heterogeneous and almost equally divided between surgically-induced and laser-induced models. Both methods have allowed successful modeling of CNV formation with induction rates comparable to those of non-human primates. However, the field would benefit from standardization of model parameters and reporting. This includes laser parameters and validation of CNV formation as well as methods of CNV evaluation and statistical analysis.
Asunto(s)
Neovascularización Coroidal , Femenino , Humanos , Porcinos , Animales , Modelos Animales de Enfermedad , Neovascularización Coroidal/tratamiento farmacológico , Retina/patología , Lámina Basal de la Coroides/patología , Angiografía con FluoresceínaRESUMEN
INTRODUCTION: The purpose of this study was to determine if conjunctival lymphangiogenesis can be induced using adenoviral delivery of vascular endothelial growth factor C (VEGF-C). METHODS: Seventeen New Zealand white rabbits received a subconjunctival injection containing 3.5 × 107 plaque-forming units of an adenoviral vector containing the gene-encoding VEGF-C (Ad-VEGF-C). The contralateral eye was used for control experiment (the same volume of either saline or an empty vector). After 2 weeks, the animals were examined with trypan blue conjunctival lymphangiography, and the eyes were harvested for histology and immunohistochemistry (podoplanin and CD31). RESULTS: Trypan blue conjunctival lymphangiography revealed significantly more extensive conjunctival vessel network in the Ad-VEGF-C group compared with control: 1.35 ± 0.67 versus 0.28 ± 0.17 vessel length/analysed area (p = <0.0001). This finding was confirmed with immunohistochemistry, where a significant increase in the number of lymphatic vessels was found compared to control; 34 ± 9 per mm2 versus 13 ± 8 per mm2 (p = 0.0019). Furthermore, there was a significant increase in lymphatic cross-sectional area; 32,500 ± 7,900 µm2 per mm2 versus 17,600 ± 9,700 µm2 per mm2 (p = 0.0149). Quantification of blood vessels revealed no significant difference in blood vessel density between Ad-VEGF-C and control; 19 ± 9 per mm2 versus 14 ± 8 per mm2 (p = 0.1971). There was no significant difference in total blood vessel area; 13,200 ± 7,600 µm2 per mm2 versus 7,100 ± 3,000 µm2 per mm2 (p = 0.0715). Eyes treated with an adenoviral vector (VEGF-C or empty vector) responded with a reactive cellular response, predominantly lymphocytes, towards the vector. CONCLUSION: The study demonstrates the feasibility of inducing conjunctival lymphangiogenesis with a single subconjunctival injection of Ad-VEGF-C. Future studies will explore how this can be used with a therapeutic purpose.
Asunto(s)
Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular , Conejos , Animales , Factor C de Crecimiento Endotelial Vascular/genética , Linfangiogénesis/fisiología , Azul de Tripano , ConjuntivaRESUMEN
Microgravity changes the gene expression pattern in various cell types. This study focuses on the breast cancer cell lines MCF-7 (less invasive) and MDA-MB-231 (triple-negative, highly invasive). The cells were cultured for 14 days under simulated microgravity (s-µg) conditions using a random positioning machine (RPM). We investigated cytoskeletal and extracellular matrix (ECM) factors as well as focal adhesion (FA) and the transmembrane proteins involved in different cellular signaling pathways (MAPK, PAM and VEGF). The mRNA expressions of 24 genes of interest (TUBB, ACTB, COL1A1, COL4A5, LAMA3, ITGB1, CD44, VEGF, FLK1, EGFR, SRC, FAK1, RAF1, AKT1, ERK1, MAPK14, MAP2K1, MTOR, RICTOR, VCL, PXN, CDKN1, CTNNA1 and CTNNB1) were determined by quantitative real-time PCR (qPCR) and studied using STRING interaction analysis. Histochemical staining was carried out to investigate the morphology of the adherent cells (ADs) and the multicellular spheroids (MCSs) after RPM exposure. To better understand this experimental model in the context of breast cancer patients, a weighted gene co-expression network analysis (WGCNA) was conducted to obtain the expression profiles of 35 breast cell lines from the HMS LINCS Database. The qPCR-verified genes were searched in the mammalian phenotype database and the human genome-wide association studies (GWAS) Catalog. The results demonstrated the positive association between the real metastatic microtumor environment and MCSs with respect to the extracellular matrix, cytoskeleton, morphology, different cellular signaling pathway key proteins and several other components. In summary, the microgravity-engineered three-dimensional MCS model can be utilized to study breast cancer cell behavior and to assess the therapeutic efficacies of drugs against breast cancer in the future.
Asunto(s)
Neoplasias de la Mama , Ingravidez , Humanos , Femenino , Transducción de Señal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estudio de Asociación del Genoma Completo , Expresión Génica , Simulación de Ingravidez , Línea Celular TumoralRESUMEN
INTRODUCTION: A long-term stay of humans in space causes health problems and changes in protists and plants. Deep space exploration will increase the time humans or rodents will spend in microgravity (µg). Moreover, they are exposed to cosmic radiation, hypodynamia, and isolation. OMICS investigations will increase our knowledge of the underlying mechanisms of µg-induced alterations in vivo and in vitro. AREAS COVERED: We summarize the findings over the recent 3 years on µg-induced changes in the proteome of protists, plants, rodent, and human cells. Considering the thematic orientation of microgravity-related publications in that time frame, we focus on medicine-associated findings, such as the µg-induced antibiotic resistance of bacteria, the myocardial consequences of µg-induced calpain activation, and the role of MMP13 in osteoarthritis. All these point to the fact that µg is an extreme stressor that could not be evolutionarily addressed on Earth. EXPERT OPINION: In conclusion, when interpreting µg-experiments, the direct, mostly unspecific stress response, must be distinguished from specific µg-effects. For this reason, recent studies often do not consider single protein findings but place them in the context of protein-protein interactions. This enables an estimation of functional relationships, especially if these are supported by epigenetic and transcriptional data (multi-omics).
Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Miocardio , Proteoma/genéticaRESUMEN
The therapeutic effect of retinal gene therapy using CRISPR/Cas9-mediated genome editing and knockout applications is dependent on efficient and safe delivery of gene-modifying tool kits. Recently, transient administration of single guide RNAs (sgRNAs) and SpCas9 proteins delivered as ribonucleoproteins (RNPs) has provided potent gene knockout in vitro. To improve efficacy of CRISPR-based gene therapy, we delivered RNPs containing SpCas9 protein complexed to chemically modified sgRNAs (msgRNAs). In K562 cells, msgRNAs significantly increased the insertion/deletion (indel) frequency (25%) compared with unmodified counterparts leading to robust knockout of the VEGFA gene encoding vascular endothelial growth factor A (96% indels). Likewise, in HEK293 cells, lipoplexes containing varying amounts of RNP and EGFP mRNA showed efficient VEGFA knockout (43% indels) and strong EGFP expression, indicative of efficacious functional knockout using small amounts of RNP. In mice, subretinal injections of equivalent lipoplexes yielded 6% indels in Vegfa of isolated EGFP-positive RPE cells. However, signs of toxicity following delivery of lipoplexes containing high amounts of RNP were observed. Although the mechanism resulting in the varying efficacy remains to be elucidated, our data suggest that a single subretinal injection of RNPs carrying msgRNAs and SpCas9 induces targeted retinal indel formation, thus providing a clinically relevant strategy relying on nonviral delivery of short-lived nuclease activity.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , ARN Guía de Kinetoplastida/genética , Retina/metabolismo , Ribonucleoproteínas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Línea Celular , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Ratones , TransfecciónRESUMEN
The high mortality in men with metastatic prostate cancer (PC) establishes the need for diagnostic optimization by new biomarkers. Mindful of the effect of real microgravity on metabolic pathways of carcinogenesis, we attended a parabolic flight (PF) mission to perform an experiment with the PC cell line PC-3, and submitted the resulting RNA to next generation sequencing (NGS) and quantitative real-time PCR (qPCR). After the first parabola, alterations of the F-actin cytoskeleton-like stress fibers and pseudopodia are visible. Moreover, numerous significant transcriptional changes are evident. We were able to identify a network of relevant PC cytokines and chemokines showing differential expression due to gravitational changes, particularly during the early flight phases. Together with differentially expressed regulatory lncRNAs and micro RNAs, we present a portfolio of 298 potential biomarkers. Via qPCR we identified IL6 and PIK3CB to be sensitive to vibration effects and hypergravity, respectively. Per NGS we detected five upregulated cytokines (CCL2, CXCL1, IL6, CXCL2, CCL20), one zink finger protein (TNFAIP3) and one glycoprotein (ICAM1) related to c-REL signaling and thus relevant for carcinogenesis as well as inflammatory aspects. We found regulated miR-221 and the co-localized lncRNA MIR222HG induced by PF maneuvers. miR-221 is related to the PC-3 growth rate and MIR222HG is a known risk factor for glioma susceptibility. These findings in real microgravity may further improve our understanding of PC and contribute to the development of new diagnostic tools.
Asunto(s)
MicroARNs , Neoplasias de la Próstata , Vuelo Espacial , Ingravidez , Carcinogénesis , Citocinas/genética , Humanos , Interleucina-6 , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genéticaRESUMEN
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Asunto(s)
Neoplasias , Ingravidez , Humanos , Masculino , Organoides , Esferoides Celulares , Simulación de IngravidezRESUMEN
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Asunto(s)
Neoplasias/patología , Factores de Transcripción SOX/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción SOX/genética , Transducción de SeñalRESUMEN
As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell-cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.
Asunto(s)
Exosomas/genética , Medio Ambiente Extraterrestre , MicroARNs/metabolismo , Neoplasias de la Tiroides/genética , Ingravidez , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , MicroARNs/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patologíaRESUMEN
A spaceflight to the International Space Station (ISS) is a dream of many researchers. We had the chance to investigate the effect of real microgravity (CellBox-2 Space mission) on the transcriptome and proteome of FTC-133 human follicular thyroid cancer cells (TCC). The cells had been sent to the ISS by a Falcon 9 rocket of SpaceX CRS-13 from Cape Canaveral (United States) and cultured in six automated hardware units on the ISS before they were fixed and returned to Earth. Multicellular spheroids (MCS) were detectable in all spaceflight hardware units. The VCL, PXN, ITGB1, RELA, ERK1 and ERK2 mRNA levels were significantly downregulated after 5 days in space in adherently growing cells (AD) and MCS compared with ground controls (1g), whereas the MIK67 and SRC mRNA levels were both suppressed in MCS. By contrast, the ICAM1, COL1A1 and IL6 mRNA levels were significantly upregulated in AD cells compared with 1g and MCS. The protein secretion measured by multianalyte profiling technology and enzyme-linked immunosorbent assay (AngiogenesisMAP®, extracellular matrix proteins) was not significantly altered, with the exception of elevated angiopoietin 2. TCC in space formed MCS, and the response to microgravity was mainly anti-proliferative. We identified ERK/RELA as a major microgravity regulatory pathway.
Asunto(s)
Adenocarcinoma Folicular/patología , Biomarcadores de Tumor/metabolismo , Proteoma/metabolismo , Esferoides Celulares/patología , Neoplasias de la Tiroides/patología , Transcriptoma , Ingravidez , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Biomarcadores de Tumor/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Proteoma/análisis , Vuelo Espacial , Esferoides Celulares/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Células Tumorales CultivadasRESUMEN
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Asunto(s)
Neovascularización Coroidal/fisiopatología , Activación de Complemento/inmunología , Degeneración Macular Húmeda/patología , Animales , Humanos , Degeneración Macular Húmeda/inmunologíaRESUMEN
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Asunto(s)
Apoptosis , Ingravidez/efectos adversos , Animales , Radiación Cósmica/efectos adversos , Humanos , Vuelo Espacial/normasRESUMEN
Prostate cancer is one of the leading causes of cancer mortality in men worldwide. An unusual but unique environment for studying tumor cell processes is provided by microgravity, either in space or simulated by ground-based devices like a random positioning machine (RPM). In this study, prostate adenocarcinoma-derived PC-3 cells were cultivated on an RPM for time periods of 3 and 5 days. We investigated the genes associated with the cytoskeleton, focal adhesions, extracellular matrix, growth, survival, angiogenesis, and metastasis. The gene expression of signaling factors of the vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mTOR (PAM) pathways was investigated using qPCR. We performed immunofluorescence to study the cytoskeleton, histological staining to examine the morphology, and a time-resolved immunofluorometric assay to analyze the cell culture supernatants. When PC-3 cells were exposed to simulated microgravity (s-µg), some cells remained growing as adherent cells (AD), while most cells detached from the cell culture flask bottom and formed multicellular spheroids (MCS). After 3-day RPM exposure, PC-3 cells revealed significant downregulation of the VEGF, SRC1, AKT, MTOR, and COL1A1 gene expression in MCS, whereas FLT1, RAF1, MEK1, ERK1, FAK1, RICTOR, ACTB, TUBB, and TLN1 mRNAs were not significantly changed. ERK2 and TLN1 were elevated in AD, and FLK1, LAMA3, COL4A5, FN1, VCL, CDH1, and NGAL mRNAs were significantly upregulated in AD and MCS after 3 days. After a 5-day culture in s-µg, the PC-3 cells showed significant downregulations of VEGF mRNA in AD and MCS, and FN1, CDH1, and LAMA3 in AD and SCR1 in MCS. In addition, we measured significant upregulations in FLT1, AKT, ERK1, ERK2, LCN2, COL1A1, TUBB, and VCL mRNAs in AD and MCS, and increases in FLK1, FN1, and COL4A5 in MCS as well as LAMB2, CDH1, RAF1, MEK1, SRC1, and MTOR mRNAs in AD. FAK1 and RICTOR were not altered by s-µg. In parallel, the secretion rate of VEGFA and NGAL proteins decreased. Cytoskeletal alterations (F-actin) were visible, as well as a deposition of collagen in the MCS. In conclusion, RPM-exposure of PC-3 cells induced changes in their morphology, cytoskeleton, and extracellular matrix protein synthesis, as well as in their focal adhesion complex and growth behavior. The significant upregulation of genes belonging to the PAM pathway indicated their involvement in the cellular changes occurring in microgravity.
Asunto(s)
Proteínas de la Matriz Extracelular/genética , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/radioterapia , Simulación de Ingravidez , Línea Celular Tumoral , Citoesqueleto/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , MAP Quinasa Quinasa 1/genética , Masculino , Fosfatidilinositol 3-Quinasas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
BACKGROUND/AIMS: Endothelial cells exposed to the Random Positioning Machine (RPM) reveal three different phenotypes. They grow as a two-dimensional monolayer and form three-dimensional (3D) structures such as spheroids and tubular constructs. As part of the ESA-SPHEROIDS project we want to understand how endothelial cells (ECs) react and adapt to long-term microgravity. METHODS: During a spaceflight to the International Space Station (ISS) and a subsequent stay onboard, human ECs (EA.hy926 cell line) were cultured for 12 days in real microgravity inside an automatic flight hardware, specially designed for use in space. ECs were cultivated in the absence or presence of vascular endothelial growth factor, which had demonstrated a cell-protective effect on ECs exposed to an RPM simulating microgravity. After cell fixation in space and return of the samples, we examined cell morphology and analyzed supernatants by Multianalyte Profiling technology. RESULTS: The fixed samples comprised 3D multicellular spheroids and tube-like structures in addition to monolayer cells, which are exclusively observed during growth under Earth gravity (1g). Within the 3D aggregates we detected enhanced collagen and laminin. The supernatant analysis unveiled alterations in secretion of several growth factors, cytokines, and extracellular matrix components as compared to cells cultivated at 1g or on the RPM. This confirmed an influence of gravity on interacting key proteins and genes and demonstrated a flight hardware impact on the endothelial secretome. CONCLUSION: Since formation of tube-like aggregates was observed only on the RPM and during spaceflight, we conclude that microgravity may be the major cause for ECs' 3D aggregation.
Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Vuelo Espacial , Esferoides Celulares/metabolismo , Ingravidez , Línea Celular , Células Epiteliales/citología , Humanos , Esferoides Celulares/citologíaRESUMEN
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Asunto(s)
Proteoma/análisis , Animales , Humanos , Espectrometría de Masas , Ingeniería de Tejidos , IngravidezRESUMEN
Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid ß-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity. Many of RSV's beneficial effects are mediated by the transcriptional coactivator PGC-1α, a direct target of SIRT1 and a master regulator of the mitochondrial fatty acid oxidation. Despite numerous studies RSV's mechanism of action is still not completely elucidated. Our aim was to investigate the effects of RSV on gene regulation on a wide scale, possibly to detect novel genes whose up-regulation by RSV may be of interest with respect to disease treatment. We performed Next Generation Sequencing of RNA on normal fibroblasts treated with RSV. To investigate whether the effects of RSV are mediated through SIRT1 we expanded the analysis to include SIRT1-knockdown fibroblasts. We identified the aspartoacylase (ASPA) gene, mutated in Canavan disease, to be strongly up-regulated by RSV in several cell lines, including Canavan disease fibroblasts. We further link RSV to the up-regulation of other genes involved in myelination including the glial specific transcription factors POU3F1, POU3F2, and myelin basic protein (MBP). We also observe a strong up-regulation by RSV of the riboflavin transporter gene SLC52a1. Mutations in SLC52a1 cause transient multiple acyl-CoA dehydrogenase deficiency (MADD). Our analysis of alternative splicing identified novel metabolically important genes affected by RSV, among which is particularly interesting the α subunit of the stimulatory G protein (Gsα), which regulates the cellular levels of cAMP through adenylyl cyclase. We conclude that in fibroblasts RSV stimulates the PGC-1α and p53 pathways, and up-regulates genes affecting the glucose metabolism, mitochondrial ß-oxidation, and mitochondrial biogenesis. We further confirm that RSV might be a relevant treatment in the correction of FAO deficiencies and we suggest that treatment in other metabolic disorders including Canavan disease and MADD might be also beneficial.
Asunto(s)
Enfermedad de Canavan/diagnóstico , Fibroblastos/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Resveratrol/farmacología , Amidohidrolasas/genética , Enfermedad de Canavan/tratamiento farmacológico , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Genes p53 , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Terapia Molecular Dirigida , Proteína Básica de Mielina/genética , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores Acoplados a Proteínas G/genética , Análisis de Secuencia de ARN , Sirtuina 1/genética , Factores de Transcripción/genética , Regulación hacia ArribaRESUMEN
If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.