Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Mol Microbiol ; 121(1): 69-84, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38017607

RESUMEN

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Asunto(s)
Dictyostelium , Humanos , Dictyostelium/metabolismo , Dictyostelium/microbiología , Pseudomonas aeruginosa/metabolismo , Fagosomas/metabolismo , Neutrófilos , Antibacterianos/metabolismo , Bacterias
2.
Mol Microbiol ; 119(1): 74-85, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416195

RESUMEN

Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.


Asunto(s)
Dictyostelium , Animales , Dictyostelium/metabolismo , Dictyostelium/microbiología , Fagosomas/metabolismo , Klebsiella pneumoniae , Proteínas de la Membrana/metabolismo , Bacterias/metabolismo , Mamíferos
3.
Microb Ecol ; 83(4): 1088-1104, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34342700

RESUMEN

The Bacillus cereus sensu lato group consists of several closely related species, including B. anthracis, B. cereus sensu stricto, and B. thuringiensis. Spores of these pathogenic bacteria are commonly found in the soil but evidence suggests that they are unable to grow in such a natural environment in the absence of nutrient input. Amoebas have been reported to be an amplifier for several species of pathogenic bacteria and their potential involvement to explain the large amount of B. thuringiensis and B. cereus spores in soil has been frequently proposed. Here, we studied the fate of Bacillus and amoebas when cultured together. We show that the virulence factors produced by B. thuringiensis and B. cereus do not affect the amoeba Acanthamoeba castellanii, which, on the contrary, can phagocytose and effectively digest vegetative Bacillus cells to grow and prevent the formation of cysts. Bacterial spores can germinate in the amoeba environment and the vegetative cells can then form chains or aggregates that appear to be less efficiently phagocyted by the amoeba. The use of transcriptional fusions between fluorescent reporter genes and stationary phase- and sporulation-specific promoters showed that the sporulation process occurs more efficiently in the presence of amoebas than in their absence. Moreover, our results showed the amoeba environment to promote spore germination and allow the bacteria to complete their developmental cycle. Overall, this study suggests that the amoeba-Bacillus interaction creates a virtuous circle in which each protagonist helps the other to develop.


Asunto(s)
Amoeba , Bacillus anthracis , Bacillus thuringiensis , Bacillus , Bacillus anthracis/genética , Bacillus cereus/genética , Suelo
4.
Nucleic Acids Res ; 48(D1): D261-D264, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31410491

RESUMEN

The ABCD (for AntiBodies Chemically Defined) database is a repository of sequenced antibodies, integrating curated information about the antibody and its antigen with cross-links to standardized databases of chemical and protein entities. It is freely available to the academic community, accessible through the ExPASy server (https://web.expasy.org/abcd/). The ABCD database aims at helping to improve reproducibility in academic research by providing a unique, unambiguous identifier associated to each antibody sequence. It also allows to determine rapidly if a sequenced antibody is available for a given antigen.


Asunto(s)
Anticuerpos/química , Bases de Datos de Proteínas , Secuencia de Aminoácidos , Anticuerpos/inmunología , Antígenos/química , Antígenos/inmunología
5.
Cell Microbiol ; 22(1): e13129, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31652367

RESUMEN

Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine-rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.


Asunto(s)
Dictyostelium/enzimología , Ácido Fólico/metabolismo , Fagosomas/microbiología , Fosfotransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Dictyostelium/genética , Dictyostelium/microbiología , Regulación Bacteriana de la Expresión Génica , Espacio Intracelular/microbiología , Klebsiella pneumoniae/metabolismo , Leucina/química , Fagocitosis , Fosfotransferasas/genética , Dominios Proteicos , Proteínas Protozoarias/genética
6.
J Cell Sci ; 131(21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301779

RESUMEN

Previous studies have shown that TM9SF4 interacts with glycine-rich transmembrane domains (TMDs) and promotes their surface localization, presumably by escorting them along the secretory pathway. Here, we delineated the role of TM9 proteins in the sorting of TMDs. Our results indicate that TM9SF4 interacts with and sorts a variety of TMDs. In human embryonic kidney (HEK) cells, a TMD carrying a positively charged residue (T-R1) or a negatively charged residue (T-D1) was localized to the endoplasmic reticulum (ER), but partially relocated to the Golgi complex upon overexpression of TM9SF4. These results show that TM9SF4 controls the sorting of TMDs at the ER-Golgi interface. Remarkably, sorting of T-R1 in HCT116 cells was different from that in HEK cells: in HCT116 cells, a substantial fraction of T-R1 was localized to the Golgi complex, and it was relocated to the ER by genetic ablation of TM9SF4. This observation indicates that TM9SF4 sorting activity differs in HEK and HCT116 cells, resulting in different sorting of TMDs in these two cell types. Although TM9SF1 associated with several TMDs, it did not visibly alter their intracellular transport in the secretory pathway and may function in other intracellular transport pathways.


Asunto(s)
Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Dominios Proteicos , Transporte de Proteínas , Vías Secretoras
7.
J Cell Sci ; 131(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30054386

RESUMEN

Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.


Asunto(s)
Dictyostelium/fisiología , Proteínas de Membrana de los Lisosomas/metabolismo , Mycobacterium marinum/fisiología , Fagocitosis , Proteínas Protozoarias/metabolismo , Receptores de Lipoproteína/metabolismo , Antígenos CD36/genética , Dictyostelium/genética , Dictyostelium/microbiología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas Protozoarias/genética , Receptores de Lipoproteína/genética , Receptores Depuradores/genética
8.
Proc Natl Acad Sci U S A ; 114(31): 8277-8282, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716905

RESUMEN

MitoNEET (mNEET) is a dimeric mitochondrial outer membrane protein implicated in many facets of human pathophysiology, notably diabetes and cancer, but its molecular function remains poorly characterized. In this study, we generated and analyzed mNEET KO cells and found that in these cells the mitochondrial network was disturbed. Analysis of 3D-EM reconstructions and of thin sections revealed that genetic inactivation of mNEET did not affect the size of mitochondria but that the frequency of intermitochondrial junctions was reduced. Loss of mNEET decreased cellular respiration, because of a reduction in the total cellular mitochondrial volume, suggesting that intermitochondrial contacts stabilize individual mitochondria. Reexpression of mNEET in mNEET KO cells restored the WT morphology of the mitochondrial network, and reexpression of a mutant mNEET resistant to oxidative stress increased in addition the resistance of the mitochondrial network to H2O2-induced fragmentation. Finally, overexpression of mNEET increased strongly intermitochondrial contacts and resulted in the clustering of mitochondria. Our results suggest that mNEET plays a specific role in the formation of intermitochondrial junctions and thus participates in the adaptation of cells to physiological changes and to the control of mitochondrial homeostasis.


Asunto(s)
Respiración de la Célula/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/farmacología , Ratones , Mitocondrias/genética , Mitocondrias/patología , Estrés Oxidativo/genética
9.
BMC Cell Biol ; 19(1): 3, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544440

RESUMEN

BACKGROUND: The envelope protein of lentiviruses are type I transmembrane proteins, and their transmembrane domain contains conserved potentially charged residues. This highly unusual feature would be expected to cause endoplasmic reticulum (ER) localization. The aim of this study was to determine by which means the HIV-1 Env protein is transported to the cell surface although its transmembrane domain contains a conserved arginine residue. RESULTS: We expressed various chimeric proteins and analyzed the influence of their transmembrane domain on their intracellular localization. The transmembrane domain of the HIV-1 Env protein does not cause ER retention. This is not due to the presence of conserved glycine residues, or to the position of the arginine residue, but to the length of the transmembrane domain. A shortened version of the Env transmembrane domain causes arginine-dependent ER targeting. Remarkably, the transmembrane domain of the HIV-1 Env protein, although it does not confer ER retention, interacts efficiently with negatively charged residues in the membrane. CONCLUSION: These results suggest that the intrinsic properties of the HIV-1 Env transmembrane domain allow the protein to escape ER-retention mechanisms, while maintaining its ability to interact with cellular proteins and to influence cellular physiology.


Asunto(s)
VIH-1/metabolismo , Espacio Intracelular/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Membrana Celular , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Lentivirus/metabolismo , Dominios Proteicos , Transporte de Proteínas , Relación Estructura-Actividad
10.
Cell Microbiol ; 19(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28076662

RESUMEN

Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock-out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.


Asunto(s)
Dictyostelium/microbiología , Dictyostelium/fisiología , Ácido Fólico/metabolismo , Klebsiella pneumoniae/fisiología , Fagocitosis/genética , Proteínas Protozoarias/genética , Receptor 1 de Folato/genética , Técnicas de Inactivación de Genes , Fagocitosis/fisiología , Transducción de Señal/genética , Proteínas de Transporte Vesicular/genética
11.
Rev Med Suisse ; 19(849): 2128-2129, 2023 Nov 08.
Artículo en Francés | MEDLINE | ID: mdl-37938309
12.
J Cell Sci ; 128(13): 2269-77, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25999474

RESUMEN

TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Glicina/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Animales , Dictyostelium , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
J Cell Sci ; 128(8): 1568-79, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25736291

RESUMEN

STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca(2+) entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca(2+) influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca(2+) imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1(-/-)/Stim2(-/-) fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca(2+) elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones , Microscopía Electrónica de Transmisión , Proteína ORAI1 , Fosfatidilinositoles/metabolismo , Transporte de Proteínas , Molécula de Interacción Estromal 1
15.
J Cell Sci ; 127(Pt 21): 4702-13, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25189617

RESUMEN

Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.


Asunto(s)
Dictyostelium/metabolismo , Dictyostelium/microbiología , Legionella pneumophila/fisiología , Lisosomas/metabolismo , Interacciones Huésped-Patógeno
16.
Chimia (Aarau) ; 70(12): 893-897, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28661364

RESUMEN

After several decades of optimization, phage display technology enables the routine isolation and production of recombinant monoclonal antibodies in vitro. As such it has the potential to provide the academic community with a vast, inexpensive and renewable supply of well-characterized reagents, reducing bottlenecks in basic science, helping increase reproducibility of experiments, and phasing out the use of animals for production and discovery of antibodies. Yet the overwhelming majority of fundamental research laboratories still use incompletely characterized antibodies developed in animals. In order to promote increased use of recombinant antibodies in academia, we have recently initiated an open source recombinant antibody facility in Geneva (http://www.unige.ch/antibodies). Here we describe our experience at the Geneva Antibody Facility: the various techniques involved in isolation and production of antibodies, the strategic choices that we have made, and what we hope will be a bright future for this project as part of a growing movement in the scientific community to replace all animal-derived antibodies with recombinant antibodies.


Asunto(s)
Academias e Institutos , Anticuerpos/genética , Anticuerpos/inmunología , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos/aislamiento & purificación , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Suiza
19.
J Cell Sci ; 126(Pt 3): 756-66, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264736

RESUMEN

ACAPs and ASAPs are Arf-GTPase-activating proteins with BAR, PH, GAP and ankyrin repeat domains and are known to regulate vesicular traffic and actin cytoskeleton dynamics in mammalian cells. The amoeba Dictyostelium has only two proteins with this domain organization, instead of the six in human, enabling a more precise functional analysis. Genetic invalidation of acapA resulted in multinucleated cells with cytokinesis defects. Mutant acapA(-) cells were hardly motile and their multicellular development was significantly delayed. In addition, formation of filopodial protrusions was deficient in these cells. Conversely, re-expression of ACAP-A-GFP resulted in numerous and long filopodia-like protrusions. Mutagenesis studies showed that the ACAP-A actin remodeling function was dependent on its ability to activate its substrate, the small GTPase ArfA. Likewise, the expression of a constitutively active ArfA•GTP mutant in wild-type cells led to a significant reduction in filopodia length. Together, our data support a role for ACAP-A in the control of the actin cytoskeleton organization and dynamics through an ArfA-dependent mechanism.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Dictyostelium/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Seudópodos/metabolismo , Animales , Movimiento Celular/genética , Citocinesis/genética , Dictyostelium/enzimología , Proteínas Activadoras de GTPasa/genética , Humanos , Mutación/genética , Seudópodos/patología , ARN Interferente Pequeño/genética , Transgenes/genética
20.
Cell Microbiol ; 16(6): 816-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24628900

RESUMEN

Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non-pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells.


Asunto(s)
Dictyostelium/microbiología , Dictyostelium/fisiología , Viabilidad Microbiana , Fenómenos Fisiológicos Celulares , Macrófagos/inmunología , Macrófagos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA