Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genome Res ; 33(9): 1455-1464, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37793781

RESUMEN

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Asunto(s)
Desarrollo Embrionario , Familia , Embarazo , Femenino , Animales , Bovinos , Humanos , Mutación , Linaje , Genoma Humano
2.
RNA Biol ; 21(1): 52-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38989833

RESUMEN

The aim of this study was to compare the circular transcriptome of divergent tissues in order to understand: i) the presence of circular RNAs (circRNAs) that are not exonic circRNAs, i.e. originated from backsplicing involving known exons and, ii) the origin of artificial circRNA (artif_circRNA), i.e. circRNA not generated in-vivo. CircRNA identification is mostly an in-silico process, and the analysis of data from the BovReg project (https://www.bovreg.eu/) provided an opportunity to explore new ways to identify reliable circRNAs. By considering 117 tissue samples, we characterized 23,926 exonic circRNAs, 337 circRNAs from 273 introns (191 ciRNAs, 146 intron circles), 108 circRNAs from small non-coding genes and nearly 36.6K circRNAs classified as other_circRNAs. Furthermore, for 63 of those samples we analysed in parallel data from total-RNAseq (ribosomal RNAs depleted prior to library preparation) with paired mRNAseq (library prepared with poly(A)-selected RNAs). The high number of circRNAs detected in mRNAseq, and the significant number of novel circRNAs, mainly other_circRNAs, led us to consider all circRNAs detected in mRNAseq as artificial. This study provided evidence of 189 false entries in the list of exonic circRNAs: 103 artif_circRNAs identified by total RNAseq/mRNAseq comparison using two circRNA tools, 26 probable artif_circRNAs, and 65 identified by deep annotation analysis. Extensive benchmarking was performed (including analyses with CIRI2 and CIRCexplorer-2) and confirmed 94% of the 23,737 reliable exonic circRNAs. Moreover, this study demonstrates the effectiveness of a panel of highly expressed exonic circRNAs (5-8%) in analysing the tissue specificity of the bovine circular transcriptome.


Asunto(s)
Exones , ARN Circular , ARN Circular/genética , Animales , Bovinos , Intrones , Biología Computacional/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos
3.
PLoS Genet ; 17(7): e1009331, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34288907

RESUMEN

Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.


Asunto(s)
Elementos de Facilitación Genéticos , Mastitis Bovina/genética , Proteína de Unión a Vitamina D/genética , Animales , Bovinos , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma
4.
Nat Commun ; 15(1): 2154, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461177

RESUMEN

Five to ten percent of mammalian genomes is occupied by multiple clades of endogenous retroviruses (ERVs), that may count thousands of members. New ERV clades arise by retroviral infection of the germline followed by expansion by reinfection and/or retrotransposition. ERV mobilization is a source of deleterious variation, driving the emergence of ERV silencing mechanisms, leaving "DNA fossils". Here we show that the ERVK[2-1-LTR] clade is still active in the bovine and a source of disease-causing alleles. We develop a method to measure the rate of ERVK[2-1-LTR] mobilization, finding an average of 1 per ~150 sperm cells, with >10-fold difference between animals. We perform a genome-wide association study and identify eight loci affecting ERVK[2-1-LTR] mobilization. We provide evidence that polymorphic ERVK[2-1-LTR] elements in four of these loci cause the association. We generate a catalogue of full length ERVK[2-1-LTR] elements, and show that it comprises 15% of C-type autonomous elements, and 85% of D-type non-autonomous elements lacking functional genes. We show that >25% of the variance of mobilization rate is determined by the number of C-type elements, yet that de novo insertions are dominated by D-type elements. We propose that D-type elements act as parasite-of-parasite gene drives that may contribute to the observed demise of ERV elements.


Asunto(s)
Retrovirus Endógenos , Infecciones por Retroviridae , Animales , Bovinos , Masculino , Retrovirus Endógenos/genética , Estudio de Asociación del Genoma Completo , Semen , Espermatozoides , Infecciones por Retroviridae/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA