Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 440(7087): 1018-21, 2006 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-16625189

RESUMEN

The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons. Here we report the discovery of gamma-ray emission from the blazars H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources-in particular from the first stars formed. This result also indicates that intergalactic space is more transparent to gamma-rays than previously thought.

2.
Nature ; 439(7077): 695-8, 2006 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-16467831

RESUMEN

The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

3.
Nature ; 432(7013): 75-7, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525982

RESUMEN

A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

4.
Science ; 331(6018): 739-42, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21212321

RESUMEN

A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

5.
Science ; 328(5979): 725-9, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20360067

RESUMEN

The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

6.
Phys Rev Lett ; 101(26): 261104, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19437632

RESUMEN

The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

7.
Phys Rev Lett ; 101(17): 170402, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18999724

RESUMEN

In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System observations of the exceptional very high energy flare of the active galaxy PKS 2155-304 on 28 July 2006 is presented. Since no significant time lag is found, lower limits on the energy scale of speed of light modifications are derived.

8.
Science ; 314(5804): 1424-7, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17068224

RESUMEN

The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.

9.
Phys Rev Lett ; 97(22): 221102, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17155788

RESUMEN

The detection of gamma rays from the source HESS J1745-290 in the Galactic Center (GC) region with the High Energy Spectroscopic System (HESS) array of Cherenkov telescopes in 2004 is presented. After subtraction of the diffuse gamma-ray emission from the GC ridge, the source is compatible with a point source with spatial extent less than 1.2;{'}(stat) (95% C.L.). The measured energy spectrum above 160 GeV is compatible with a power law with photon index of 2.25+/-0.04(stat)+/-0.10(syst) and no significant flux variation is detected. It is finally found that the bulk of the very high energy emission must have non-dark-matter origin.

10.
Science ; 307(5717): 1938-42, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15790849

RESUMEN

Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

11.
Science ; 309(5735): 746-9, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-16002580

RESUMEN

X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA