Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 11(5): e1004241, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26020963

RESUMEN

Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal/fisiología , Sueño/fisiología , Potenciales de Acción , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fenómenos Electrofisiológicos , Hipocampo/fisiología , Homeostasis , Potenciación a Largo Plazo/fisiología , Masculino , Consolidación de la Memoria/fisiología , Modelos Psicológicos , Ratas , Ratas Wistar , Sueño REM/fisiología , Vigilia/fisiología
2.
Brain Sci ; 12(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421904

RESUMEN

Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.

3.
Neuron ; 51(5): 601-12, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16950158

RESUMEN

An important step for cholinergic transmission involves the vesicular storage of acetylcholine (ACh), a process mediated by the vesicular acetylcholine transporter (VAChT). In order to understand the physiological roles of the VAChT, we developed a genetically altered strain of mice with reduced expression of this transporter. Heterozygous and homozygous VAChT knockdown mice have a 45% and 65% decrease in VAChT protein expression, respectively. VAChT deficiency alters synaptic vesicle filling and affects ACh release. Whereas VAChT homozygous mutant mice demonstrate major neuromuscular deficits, VAChT heterozygous mice appear normal in that respect and could be used for analysis of central cholinergic function. Behavioral analyses revealed that aversive learning and memory are not altered in mutant mice; however, performance in cognitive tasks involving object and social recognition is severely impaired. These observations suggest a critical role of VAChT in the regulation of ACh release and physiological functions in the peripheral and central nervous system.


Asunto(s)
Encéfalo/metabolismo , Enfermedades de la Unión Neuromuscular/etiología , Unión Neuromuscular/metabolismo , Reconocimiento en Psicología/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Acetilcolina/análisis , Acetilcolina/metabolismo , Animales , Northern Blotting , Southern Blotting , Encéfalo/patología , Encéfalo/fisiopatología , Química Encefálica , Cromatografía Líquida de Alta Presión , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Microdiálisis , Actividad Motora/fisiología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Enfermedades de la Unión Neuromuscular/patología , Enfermedades de la Unión Neuromuscular/fisiopatología , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Transmisión Sináptica/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA