Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Mol Genet ; 32(14): 2347-2356, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37162351

RESUMEN

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid ß-oxidation (FAO) in humans. Patients exhibit clinical episodes often associated with fasting. Symptoms include hypoketotic hypoglycemia and Reye-like episodes. With limited treatment options, we explored the use of human MCAD (hMCAD) mRNA in fibroblasts from patients with MCAD deficiency to provide functional MCAD protein and reverse the metabolic block. Transfection of hMCAD mRNA into MCAD- deficient patient cells resulted in an increased MCAD protein that localized to mitochondria, concomitant with increased enzyme activity in cell extracts. The therapeutic hMCAD mRNA-lipid nanoparticle (LNP) formulation was also tested in vivo in Acadm-/- mice. Administration of multiple intravenous doses of the hMCAD mRNA-LNP complex (LNP-MCAD) into Acadm-/- mice produced a significant level of MCAD protein with increased enzyme activity in liver, heart and skeletal muscle homogenates. Treated Acadm-/- mice were more resistant to cold stress and had decreased plasma levels of medium-chain acylcarnitines compared to untreated animals. Furthermore, hepatic steatosis in the liver from treated Acadm-/- mice was reduced compared to untreated ones. Results from this study support the potential therapeutic value of hMCAD mRNA-LNP complex treatment for MCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas , Fibroblastos , Humanos , Ratones , Animales , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , ARN Mensajero/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo
2.
Mol Genet Metab ; 138(1): 106982, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580829

RESUMEN

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inborn error of long chain fatty acid ß-oxidation (FAO) with limited treatment options. Patients present with heterogeneous clinical phenotypes affecting predominantly heart, liver, and skeletal muscle. While VLCAD deficiency is a systemic disease, restoration of liver FAO has the potential to improve symptoms more broadly due to increased total body ATP production and reduced accumulation of potentially toxic metabolites. We explored the use of synthetic human VLCAD (hVLCAD) mRNA and lipid nanoparticle encapsulated hVLCAD mRNA (LNP-VLCAD) to generate functional VLCAD enzyme in patient fibroblasts derived from VLCAD deficient patients, mouse embryonic fibroblasts, hepatocytes isolated from VLCAD knockout (Acadvl-/-) mice, and Acadvl-/- mice to reverse the metabolic effects of the deficiency. Transfection of all cell types with hVLCAD mRNA resulted in high level expression of protein that localized to mitochondria with increased enzyme activity. Intravenous administration of LNP-VLCAD to Acadvl-/- mice produced a significant amount of VLCAD protein in liver, which declined over a week. Treated Acadvl-/- mice showed reduced hepatic steatosis, were more resistant to cold stress, and accumulated less toxic metabolites in blood than untreated animals. Results from this study support the potential for hVLCAD mRNA for treatment of VLCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga , Errores Innatos del Metabolismo Lipídico , Humanos , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/terapia
3.
Mol Ther ; 27(7): 1242-1251, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31056400

RESUMEN

Citrin deficiency is an autosomal recessive disorder caused by loss-of-function mutations in SLC25A13, encoding the liver-specific mitochondrial aspartate/glutamate transporter. It has a broad spectrum of clinical phenotypes, including life-threatening neurological complications. Conventional protein replacement therapy is not an option for these patients because of drug delivery hurdles, and current gene therapy approaches (e.g., AAV) have been hampered by immunogenicity and genotoxicity. Although dietary approaches have shown some benefits in managing citrin deficiency, the only curative treatment option for these patients is liver transplantation, which is high-risk and associated with long-term complications because of chronic immunosuppression. To develop a new class of therapy for citrin deficiency, codon-optimized mRNA encoding human citrin (hCitrin) was encapsulated in lipid nanoparticles (LNPs). We demonstrate the efficacy of hCitrin-mRNA-LNP therapy in cultured human cells and in a murine model of citrin deficiency that resembles the human condition. Of note, intravenous (i.v.) administration of the hCitrin-mRNA resulted in a significant reduction in (1) hepatic citrulline and blood ammonia levels following oral sucrose challenge and (2) sucrose aversion, hallmarks of hCitrin deficiency. In conclusion, mRNA-LNP therapy could have a significant therapeutic effect on the treatment of citrin deficiency and other mitochondrial enzymopathies with limited treatment options.


Asunto(s)
Citrulinemia/tratamiento farmacológico , Citrulinemia/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ARN Mensajero/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Glucosafosfato Deshidrogenasa/genética , Células HeLa , Células Hep G2 , Humanos , Lípidos/química , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Nanopartículas/química , Sistemas de Lectura Abierta/genética , ARN Mensajero/síntesis química , ARN Mensajero/química , ARN Mensajero/genética , Transfección , Resultado del Tratamiento
4.
J Biol Chem ; 291(11): 5664-5675, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26797128

RESUMEN

AMP-activated protein kinase (AMPK) is an energy-sensing enzyme whose activity is inhibited in settings of insulin resistance. Exposure to a high glucose concentration has recently been shown to increase phosphorylation of AMPK at Ser(485/491) of its α1/α2 subunit; however, the mechanism by which it does so is not known. Diacylglycerol (DAG), which is also increased in muscle exposed to high glucose, activates a number of signaling molecules including protein kinase (PK)C and PKD1. We sought to determine whether PKC or PKD1 is involved in inhibition of AMPK by causing Ser(485/491) phosphorylation in skeletal muscle cells. C2C12 myotubes were treated with the PKC/D1 activator phorbol 12-myristate 13-acetate (PMA), which acts as a DAG mimetic. This caused dose- and time-dependent increases in AMPK Ser(485/491) phosphorylation, which was associated with a ∼60% decrease in AMPKα2 activity. Expression of a phosphodefective AMPKα2 mutant (S491A) prevented the PMA-induced reduction in AMPK activity. Serine phosphorylation and inhibition of AMPK activity were partially prevented by the broad PKC inhibitor Gö6983 and fully prevented by the specific PKD1 inhibitor CRT0066101. Genetic knockdown of PKD1 also prevented Ser(485/491) phosphorylation of AMPK. Inhibition of previously identified kinases that phosphorylate AMPK at this site (Akt, S6K, and ERK) did not prevent these events. PMA treatment also caused impairments in insulin-signaling through Akt, which were prevented by PKD1 inhibition. Finally, recombinant PKD1 phosphorylated AMPKα2 at Ser(491) in cell-free conditions. These results identify PKD1 as a novel upstream kinase of AMPKα2 Ser(491) that plays a negative role in insulin signaling in muscle cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Insulina/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Animales , Línea Celular , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fosforilación , Serina/metabolismo
5.
Arch Biochem Biophys ; 623-624: 49-57, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526426

RESUMEN

AMP-activated protein kinase (AMPK) is an enzyme crucial in cellular metabolism found to be inhibited in many metabolic diseases including type 2 diabetes. Thiazolidinediones (TZDs) are a class of anti-diabetic drug known to activate AMPK through increased phosphorylation at Thr172, however there has been no research to date on whether they have any effect on inhibition of AMPK's lesser known site of inhibition, Ser485/491. HepG2 cells were treated with troglitazone and phosphorylation of AMPK was found to increase at both Thr172 and Ser485 in a dose- and time-dependent manner. Treatment of HepG2 cells with insulin and PMA led to increases in p-AMPK Ser485 via Akt and PKD1 respectively; however these kinases were not found to be implicated in increases seen from troglitazone. Incubation with the other TZDs, rosiglitazone and pioglitazone, let to a minor increase in p-AMPK Ser485 phosphorylation as well as AMPK activity; however these findings were significantly less than those of troglitazone under equal conditions. These data suggest that the effects of troglitazone on AMPK are more complex than previously thought. Phosphorylation at sites of both activation and inhibition can occur in tandem, although the mechanism by which this occurs has not yet been elucidated.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cromanos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Activación Enzimática/efectos de los fármacos , Hipoglucemiantes/farmacología , Tiazolidinedionas/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Pioglitazona , Rosiglitazona , Troglitazona
6.
Arch Biochem Biophys ; 562: 62-9, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25172224

RESUMEN

Recent studies have highlighted the importance of an inhibitory phosphorylation site, Ser(485/491), on the α-subunit of AMP-activated protein kinase (AMPK); however, little is known about the regulation of this site in liver and skeletal muscle. We examined whether the inhibitory effects of insulin on AMPK activity may be mediated through the phosphorylation of this inhibitory Ser(485/491) site in hepatocytes, myotubes and incubated skeletal muscle. HepG2 and C2C12 cells were stimulated with or without insulin for 15-min. Similarly, rat extensor digitorum longus (EDL) muscles were treated +/- insulin for 10-min. Insulin significantly increased Ser(485/491) p-AMPK under all conditions, resulting in a subsequent reduction in AMPK activity, ranging from 40% to 70%, despite no change in p-AMPK Thr(172). Akt inhibition both attenuated the increase in Ser(485/491) p-AMPK caused by insulin, and prevented the decrease in AMPK activity. Similarly, the growth factor IGF-1 stimulated Ser(485/491) AMPK phosphorylation, and this too was blunted by inhibition of Akt. Inhibition of the mTOR pathway with rapamycin, however, had no effect on insulin-stimulated Ser(485/491) p-AMPK. These data suggest that insulin and IGF-1 diminish AMPK activity in hepatocytes and muscle, most likely through Akt activation and the inhibitory phosphorylation of Ser(485/491) on its α-subunit.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Serina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología
7.
Circ Res ; 111(8): 1012-26, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22904094

RESUMEN

RATIONALE: At birth, there is a switch from placental to pulmonary circulation and the heart commences its aerobic metabolism. In cardiac myocytes, this transition is marked by increased mitochondrial biogenesis and remodeling of the intracellular architecture. The mechanisms governing the formation of new mitochondria and their expansion within myocytes remain largely unknown. Mitofusins (Mfn-1 and Mfn-2) are known regulators of mitochondrial networks, but their role during perinatal maturation of the heart has yet to be examined. OBJECTIVE: The objective of this study was to determine the significance of mitofusins during early postnatal cardiac development. METHODS AND RESULTS: We genetically inactivated Mfn-1 and Mfn-2 in midgestational and postnatal cardiac myocytes using a loxP/Myh6-cre approach. At birth, cardiac morphology and function of double-knockout (DKO) mice are normal. At that time, DKO mitochondria increase in numbers, appear to be spherical and heterogeneous in size, but exhibit normal electron density. By postnatal day 7, the mitochondrial numbers in DKO myocytes remain abnormally expanded and many lose matrix components and membrane organization. At this time point, DKO mice have developed cardiomyopathy. This leads to a rapid decline in survival and all DKO mice die before 16 days of age. Gene expression analysis of DKO hearts shows that mitochondria biogenesis genes are downregulated, the mitochondrial DNA is reduced, and mitochondrially encoded transcripts and proteins are also reduced. Furthermore, mitochondrial turnover pathways are dysregulated. CONCLUSIONS: Our findings establish that Mfn-1 and Mfn-2 are essential in mediating mitochondrial remodeling during postnatal cardiac development, a time of dramatic transitions in the bioenergetics and growth of the heart.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Corazón/embriología , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/fisiología , Animales , Animales Recién Nacidos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , GTP Fosfohidrolasas/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/patología , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Miofibrillas/patología , Miofibrillas/fisiología , Miofibrillas/ultraestructura , Tasa de Supervivencia
8.
Hum Gene Ther ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001827

RESUMEN

Maple syrup urine disease (MSUD) is a rare, inherited, metabolic disorder characterized by dysfunction of the multi-subunit, mitochondrial enzyme complex branched-chain alpha-keto acid dehydrogenase (BCKDH). BCKDH catalyzes the oxidative decarboxylation of branched-chain amino acids (BCAAs). BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues in the absence of functional BCKDH. We evaluated a lipid nanoparticle (LNP)-based treatment approach to address all possible genetic mutations that can cause MSUD (BCKDHA, BCKDHB, and DBT). In the intermediate MSUD mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH, repeated administration of LNP-encapsulated mRNA therapy significantly extended survival and reduced serum leucine levels. We also evaluated our LNP approach in several models of classic MSUD, namely DBT knockout (KO) mice and the new BCKDHA KO and BCKDHB KO mice. The latter two were generated by CRISPR/Cas9 gene editing and contain the highly prevalent classic MSUD-causing mutations seen in the Mennonite and Costa Rican populations. Intravenous LNP-encapsulated mRNA administration extended survival and increased body weight in the DBT KO and BCKDHA KO models of classic MSUD but was not effective in BCKDHB KO mice. Our data provide a promising proof-of-concept that a universal, mutation-independent approach to treating MSUD is possible and viable.

9.
Nat Commun ; 15(1): 3804, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714648

RESUMEN

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Modelos Animales de Enfermedad , Fenilcetonurias , Acidemia Propiónica , ARN Mensajero , Acidemia Propiónica/genética , Acidemia Propiónica/terapia , Acidemia Propiónica/tratamiento farmacológico , Animales , Fenilcetonurias/genética , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/terapia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Ratones , Humanos , Masculino , Femenino , Nanopartículas/química , Ratones Endogámicos C57BL , Liposomas
10.
Mol Ther Methods Clin Dev ; 29: 32-39, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-36936447

RESUMEN

Crigler-Najjar syndrome is a rare disorder of bilirubin metabolism caused by uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) mutations characterized by hyperbilirubinemia and jaundice. No cure currently exists; treatment options are limited to phototherapy, whose effectiveness diminishes over time, and liver transplantation. Here, we evaluated the therapeutic potential of systemically administered, lipid nanoparticle-encapsulated human UGT1A1 (hUGT1A1) mRNA therapy in a Crigler-Najjar mouse model. Ugt1 knockout mice were rescued from lethal post-natal hyperbilirubinemia by phototherapy. These adult Ugt1 knockout mice were then administered a single lipid nanoparticle-encapsulated hUGT1A1 mRNA dose. Within 24 h, serum total bilirubin levels decreased from 15 mg/dL (256 µmol/L) to <0.5 mg/dL (9 µmol/L), i.e., slightly above wild-type levels. This reduction was sustained for 2 weeks before bilirubin levels rose and returned to pre-treatment levels by day 42 post-administration. Sustained reductions in total bilirubin levels were achieved by repeated administration of the mRNA product in a frequency-dependent manner. We were also able to rescue the neonatal lethality phenotype seen in Ugt1 knockout mice with a single lipid nanoparticle dose, which suggests that this may be a treatment modality appropriate for metabolic crisis situations. Therefore, lipid nanoparticle-encapsulated hUGT1A1 mRNA may represent a potential treatment for Crigler-Najjar syndrome.

11.
Am J Physiol Endocrinol Metab ; 301(2): E380-90, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21586699

RESUMEN

Genetic ablation of the voltage-gated potassium channel Kv1.3 improves insulin sensitivity and increases metabolic rate in mice. Inhibition of Kv1.3 in mouse adipose and skeletal muscle is reported to increase glucose uptake through increased GLUT4 translocation. Since Kv1.3 represents a novel target for the treatment of diabetes, the present study investigated whether Kv1.3 is functionally expressed in human adipose and skeletal muscle and whether specific pharmacological inhibition of the channel is capable of modulating insulin sensitivity in diabetic mouse models. Voltage-gated K(+) channel currents in human skeletal muscle cells (SkMC) were insensitive to block by the specific Kv1.3 blockers 5-(4-phenoxybutoxy)psoralen (PAP-1) and margatoxin (MgTX). Glucose uptake into SkMC and mouse 3T3-L1 adipocytes was also unaffected by treatment with PAP-1 or MgTX. Kv1.3 protein expression was not observed in human adipose or skeletal muscle from normal and type 2 diabetic donors. To investigate the effect of specific Kv1.3 inhibition on insulin sensitivity in vivo, PAP-1 was administered to hyperglycemic mice either acutely or for 5 days prior to an insulin tolerance test. No effect on insulin sensitivity was observed at free plasma PAP-1 concentrations that are specific for inhibition of Kv1.3. Insulin sensitivity was increased only when plasma concentrations of PAP-1 were sufficient to inhibit other Kv1 channels. Surprisingly, acute inhibition of Kv1.3 in the brain was found to decrease insulin sensitivity in ob/ob mice. Overall, these findings are not supportive of a role for Kv1.3 in the modulation of peripheral insulin sensitivity.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Ficusina/farmacología , Resistencia a la Insulina/fisiología , Insulina/fisiología , Canal de Potasio Kv1.3/fisiología , Células 3T3-L1 , Tejido Adiposo/citología , Tejido Adiposo/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/metabolismo , Glucosa/farmacocinética , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Ratones , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Proteínas Asociadas a Pancreatitis , Técnicas de Placa-Clamp , Potasio/metabolismo , Venenos de Escorpión/farmacología
12.
PLoS One ; 10(5): e0127388, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996822

RESUMEN

We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100µM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Expresión Génica , Glucosa/administración & dosificación , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Nicotinamida Fosforribosiltransferasa/metabolismo , Oxidación-Reducción , Fosforilación , Ratas , Sirtuina 1/genética , Sirtuina 1/metabolismo
13.
Diabetes Metab Syndr Obes ; 7: 241-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25018645

RESUMEN

Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, ß-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly - some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D.

14.
J Endocrinol Diabetes Obes ; 1(1): 1008, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26120590

RESUMEN

It is well established that chronic exposure to excess nutrients leads to insulin resistance (IR) in skeletal muscle. Since skeletal muscle is responsible for 70-80% of insulin-stimulated glucose uptake, skeletal muscle IR is a key pathological component of type 2 diabetes (T2D). Recent evidence suggests that inhibition of the nutrient-sensing enzyme AMP-activated protein kinase (AMPK) is an early event in the development of IR in response to high glucose, branched chain amino acids (BCAA), or fatty acids (FA). Whether the decrease in AMPK activity is causal to the events leading to insulin resistance (increased mTOR/p70S6K signaling) remains to be determined. Interestingly, pharmacological activation of AMPK can prevent activation of mTOR/p70S6K and insulin resistance, while inhibition of mTOR with rapamycin prevents insulin resistance, but not AMPK downregulation. AMPK can be inhibited by increased energy state (reduced AMP/ATP ratio), decreased phosphorylation of its activation site (αThr172) (by decreased upstream kinase activity or increased phosphatase activity), increased inhibitory phosphorylation at αSer485/491, changes in redox state or hormone levels, or other yet to be identified mechanisms. Excess nutrients also lead to an accumulation of the toxic lipid intermediates diacylglycerol (DAG) and ceramides, both of which can activate various protein kinase C (PKC) isoforms, and contribute to IR. The mechanism responsible for the initial downregulation of AMPK in response to excess nutrients, and whether glucose, BCAA, and FA act through similar or different pathways requires further study. Identification of this mechanism and the relative importance of other events would be beneficial for designing novel pharmacological interventions to prevent and/or reverse IR. This review will focus on the some of the mechanisms responsible for AMPK downregulation and the relative sequence and importance of these events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA