Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 130(1): 210-7, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18062690

RESUMEN

A series of bis-phenylpyridine, bis-aquo iridium(III) complexes is herein shown to robustly and efficiently catalyze the oxidation of water to dioxygen in the presence of a sacrificial oxidant. Through substitution on the cyclometalating ligands of these complexes, it is shown that a broad range of oxidation potentials can be achieved within this class of catalyst. Parallel, dynamic monitoring of oxygen evolution, made possible by equipping reaction vessels with pressure-voltage transducers, facilitates correlation of these complexes' ionization potentials with their respective activity toward water oxidation. The importance of these catalysts lies in (A) their ability to oxidize water in a purely aqueous medium, (B) their simplicity of design, (C) their durability, and (D) the ease with which they can be tuned to accommodate the electrochemical needs of photosensitizers in hypothetical photochemical water oxidation and full artificial photosynthetic schemes.

2.
J Am Chem Soc ; 130(48): 16435-41, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18998648

RESUMEN

Two strategies for the synthesis of configurationally stable twisted polycyclic aromatic compounds (PACs) were pursued. The first approach employed dissymmetrically positioned 1-naphthyl substituents to bias the direction of twist in highly substituted PACs. 2,3-Bis(1-naphthyl)-1,4-diphenyltriphenylene (7) was prepared, and its meso cis-dinaphthyl and enantiomeric trans-dinaphthyl isomers were resolved by preparative supercritical fluid chromatography (SFC) on chiral supports. Similarly, several naphthyl-substituted derivatives of the more highly twisted 9,10,11,12,13,14-hexaphenylbenzo[b]triphenylene (2) were prepared. Of these, 10-(1-naphthyl)-9,11,12,14-tetraphenylbenzo[b]triphenylene (13) was resolved by SFC on a chiral support. The pure enantiomers of trans-7 showed moderately large specific rotations ([alpha]D(25) = -330 and +320 degrees), but the specific rotations for the enantiomers of 13 were unexpectedly small ([alpha]D(25) = -23 and +23 degrees). Computational studies suggest that the latter result is due to presence of a minor conformation of 13 possessing a larger rotation of opposite sign than the major conformation. Both 7 and 13 showed strong circular dichroism and moderately strong circularly polarized luminescence. A byproduct of these syntheses was 9,10,19,21-tetraphenyldiphenanthro[9,10-b:9,10-h]carbazole (15), a very crowded carbazole that exhibits an 81 degree end-to-end twist but is not resolvable. In the second approach, the large, twisted, polycyclic aromatic ligand 9,10,11,12,13,14-hexaphenylbenzo[h]naphtho[2,3-f]quinoline (21, an aza-2) was used to prepare the chiral, cyclometallated iridium(III) complex 4. The ligand 21 was prepared via an unusually stable benzannulated norbornadienone, for which the free energy of activation for decarbonylation was a remarkable 33.5 kcal/mol. The iridium complex 4 proved to be configurationally stable and resolvable by analytical HPLC on chiral supports, but the low solubility of 4 prevented its resolution on a preparative scale. A much more soluble dibutyl analogue of 4 (complex 28) was then prepared, but it was not resolvable on any of the available media.

3.
Inorg Chem ; 47(3): 974-9, 2008 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-18179205

RESUMEN

Time-dependent density functional theory (TD-DFT) is applied to the UV-vis absorption and circular dichroism (CD) spectra of a series of transition metals (M=Ru, Zn, Fe) complexed with an enantiopure hemicage ligand, (-)-(5R,5'R,5' 'R,7R,7'R,7' 'R,8S,8'S,8' 'S)-8,8',8' '-[(2,4,6-trimethyl-1,3,5-benzenetriyl)tris(methylene)]tris[5,6,7,8-tetrahydro-6,6-dimethyl-3-(2-pyridinyl)-5,7-methanoisoquinoline (1). The electronic spectra of the Ru and Fe complexes contain two regions, one featuring low-energy 1MLCT transitions and the other higher energy 1LC transitions; the Zn analog possesses only the 1LC transitions due to its filled 3d shell. TD-DFT is able to identify correctly these transitions in the spectra, as well as to reproduce experimental spectra accurately, with regard to both the transition energies and the relative intensities of the different transitions. Additionally, it is possible to use TD-DFT to assign the absolute configuration at the metal center with high confidence by matching the experimental and calculated spectra.


Asunto(s)
Metales/química , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Estereoisomerismo
4.
Inorg Chem ; 47(6): 2039-48, 2008 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-18271527

RESUMEN

A family of heteroleptic (C;N)2Ir(acac) and homoleptic fac-Ir(C;N)3 complexes have been synthesized and their photophysical properties studied (where C;N = a substituted 2-phenylpyridine and acac = acetylacetonate). The neutral Delta and Lambda complexes were separated with greater than 95% enantiomeric purity by chiral supercritical fluid chromatography, and the solution circular dichroism and circularly polarized luminescence spectra for each of the enantio-enriched iridium complexes were obtained. The experimentally measured emission dissymmetries (gem) for this series compared well with predicted values provided by time-dependent density functional theory calculations. The discovered trend further showed a correlation with the dissymmetries of ionic, enantiopure hemicage compounds of Ru(II) and Zn(II), thus demonstrating the applicability of the model for predicting emission dissymmetry values across a wide range of complexes.

5.
J Am Chem Soc ; 129(1): 210-7, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17199301

RESUMEN

Two enantiomers of a new 4,5-pineno-2,2'-bipyridine ligand were synthesized and subsequently incorporated into hemicage ligands through a phenyl linker to yield ligands (+)-L1 and (-)-L1 or through a mesityl linker to yield ligands (+)-L2 and (-)-L2. Complexation of these ligands to Ru(II) afforded diastereomerically pure Delta and Lambda isomers, as verified through circular dichroism and circularly polarized luminescence spectroscopy. Ligands (+)-L2 and (-)-L2 were further coordinated to Zn(II) to form a complex with intriguing photophysical properties. Whereas Zn(bpy)32+ was shown to be a fluorescent emitter outside the visible spectrum, the caging process provided an unprecedented enhancement of intersystem crossing and subsequent switching to the phosphorescent emission of blue light. Additionally, the chiroptical properties of the Zn(II) complexes were also studied.


Asunto(s)
2,2'-Dipiridil/química , Luminiscencia , Compuestos Organometálicos/química , Rutenio/química , Zinc/química , Ligandos , Óptica y Fotónica , Compuestos Organometálicos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA