Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Magn Reson Med ; 89(1): 40-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161342

RESUMEN

PURPOSE: We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 ( 31 $$ {}^{31} $$ P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work. THEORY AND METHODS: Convolutional neural network architectures have been proposed for the analysis and quantification of 31 $$ {}^{31} $$ P-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional 31 $$ {}^{31} $$ P-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques. RESULTS: The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude. CONCLUSION: The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.


Asunto(s)
Inteligencia Artificial , Fósforo , Humanos , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Redes Neurales de la Computación
2.
NMR Biomed ; 35(1): e4615, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34595791

RESUMEN

There is a growing interest in the neuroscience community to map the distribution of brain metabolites in vivo. Magnetic resonance spectroscopic imaging (MRSI) is often limited by either a poor spatial resolution and/or a long acquisition time, which severely restricts its applications for clinical and research purposes. Building on a recently developed technique of acquisition-reconstruction for 2D MRSI, we combined a fast Cartesian 1 H-FID-MRSI acquisition sequence, compressed-sensing acceleration, and low-rank total-generalized-variation constrained reconstruction to produce 3D high-resolution whole-brain MRSI with a significant acquisition time reduction. We first evaluated the acceleration performance using retrospective undersampling of a fully sampled dataset. Second, a 20 min accelerated MRSI acquisition was performed on three healthy volunteers, resulting in metabolite maps with 5 mm isotropic resolution. The metabolite maps exhibited the detailed neurochemical composition of all brain regions and revealed parts of the underlying brain anatomy. The latter assessment used previous reported knowledge and a atlas-based analysis to show consistency of the concentration contrasts and ratio across all brain regions. These results acquired on a clinical 3 T MRI scanner successfully combined 3D 1 H-FID-MRSI with a constrained reconstruction to produce detailed mapping of metabolite concentrations at high resolution over the whole brain, with an acquisition time suitable for clinical or research settings.


Asunto(s)
Mapeo Encefálico , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Estudios Retrospectivos
3.
Magn Reson Med ; 81(5): 2841-2857, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30565314

RESUMEN

PURPOSE: Epitomizing the advantages of ultra short echo time and no chemical shift displacement error, high-resolution-free induction decay magnetic resonance spectroscopic imaging (FID-MRSI) sequences have proven to be highly effective in providing unbiased characterizations of metabolite distributions. However, its merits are often overshadowed in high-resolution settings by reduced signal-to-noise ratios resulting from the smaller voxel volumes procured by extensive phase encoding and the related acquisition times. METHODS: To address these limitations, we here propose an acquisition and reconstruction scheme that offers both implicit dataset denoising and acquisition acceleration. Specifically, a slice selective high-resolution FID-MRSI sequence was implemented. Spectroscopic datasets were processed to remove fat contamination, and then reconstructed using a total generalized variation (TGV) regularized low-rank model. We further measured reconstruction performance for random undersampled data to assess feasibility of a compressed-sensing SENSE acceleration scheme. Performance of the lipid suppression was assessed using an ad hoc phantom, while that of the low-rank TGV reconstruction model was benchmarked using simulated MRSI data. To assess real-world performance, 2D FID-MRSI acquisitions of the brain in healthy volunteers were reconstructed using the proposed framework. RESULTS: Results from the phantom and simulated data demonstrate that skull lipid contamination is effectively removed and that data reconstruction quality is improved with the low-rank TGV model. Also, we demonstrated that the presented acquisition and reconstruction methods are compatible with a compressed-sensing SENSE acceleration scheme. CONCLUSIONS: An original reconstruction pipeline for 2D 1 H-FID-MRSI datasets was presented that places high-resolution metabolite mapping on 3T MR scanners within clinically feasible limits.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Algoritmos , Simulación por Computador , Compresión de Datos , Análisis de Fourier , Voluntarios Sanos , Humanos , Lípidos/química , Modelos Estadísticos , Distribución Normal , Fantasmas de Imagen , Espectrofotometría
4.
Nano Lett ; 15(7): 4461-6, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26079771

RESUMEN

Improving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained. We demonstrate that such a substrate can induce transient poration of cells by a purely optically induced process.


Asunto(s)
Oro/química , Rayos Láser , Nanoestructuras/química , Transfección/métodos , Supervivencia Celular , Células HeLa , Humanos , Nanoestructuras/ultraestructura , Óptica y Fotónica , Resonancia por Plasmón de Superficie
5.
Dev Cogn Neurosci ; 61: 101254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37182337

RESUMEN

Preterm birth disrupts important neurodevelopmental processes occurring from mid-fetal to term-age. Musicotherapy, by enriching infants' sensory input, might enhance brain maturation during this critical period of activity-dependent plasticity. To study the impact of music on preterm infants' brain structural changes, we recruited 54 very preterm infants randomized to receive or not a daily music intervention, that have undergone a longitudinal multi-shell diffusion MRI acquisition, before the intervention (at 33 weeks' gestational age) and after it (at term-equivalent-age). Using whole-brain fixel-based (FBA) and NODDI analysis (n = 40), we showed a longitudinal increase of fiber cross-section (FC) and fiber density (FD) in all major cerebral white matter fibers. Regarding cortical grey matter, FD decreased while FC and orientation dispersion index (ODI) increased, reflecting intracortical multidirectional complexification and intracortical myelination. The music intervention resulted in a significantly higher longitudinal increase of FC and ODI in cortical paralimbic regions, namely the insulo-orbito-temporopolar complex, precuneus/posterior cingulate gyrus, as well as the auditory association cortex. Our results support a longitudinal early brain macro and microstructural maturation of white and cortical grey matter in preterm infants. The music intervention led to an increased intracortical complexity in regions important for socio-emotional development, known to be impaired in preterm infants.


Asunto(s)
Música , Nacimiento Prematuro , Sustancia Blanca , Lactante , Femenino , Recién Nacido , Humanos , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Encéfalo
6.
ArXiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37292485

RESUMEN

A novel method for fast and high-resolution metabolic imaging, called ECcentric Circle ENcoding TRajectorIes for Compressed sensing (ECCENTRIC), has been developed and implemented at 7 Tesla MRI. ECCENTRIC is a non-Cartesian spatial-spectral encoding method optimized to accelerate magnetic resonance spectroscopic imaging (MRSI) with high signal-to-noise at ultra-high field. The approach provides flexible and random (k,t) sampling without temporal interleaving to improve spatial response function and spectral quality. ECCENTRIC needs low gradient amplitudes and slew-rates that reduces electrical, mechanical and thermal stress of the scanner hardware, and is robust to timing imperfection and eddy-current delays. Combined with a model-based low-rank reconstruction, this approach enables simultaneous imaging of up to 14 metabolites over the whole-brain at 2-3mm isotropic resolution in 4-10 minutes. In healthy volunteers ECCENTRIC demonstrated unprecedented spatial mapping of fine structural details of human brain neurochemistry. This innovative tool introduces a novel approach to neuroscience, providing new insights into the exploration of brain activity and physiology.

7.
Phys Med ; 102: 79-87, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36137403

RESUMEN

MRI is a non-invasive medical imaging modality that is sensitive to patient motion, which constitutes a major limitation in most clinical applications. Solutions may arise from the reduction of acquisition times or from motion-correction techniques, either prospective or retrospective. Benchmarking the latter methods requires labeled motion-corrupted datasets, which are uncommon. Up to our best knowledge, no protocol for generating labeled datasets of MRI images corrupted by controlled motion has yet been proposed. Hence, we present a methodology allowing the acquisition of reproducible motion-corrupted MRI images as well as validation of the system's performance by motion estimation through rigid-body volume registration of fast 3D echo-planar imaging (EPI) time series. A proof-of-concept is presented, to show how the protocol can be implemented to provide qualitative and quantitative results. An MRI-compatible video system displays a moving target that volunteers equipped with customized plastic glasses must follow to perform predefined head choreographies. Motion estimation using rigid-body EPI time series registration demonstrated that head position can be accurately determined (with an average standard deviation of about 0.39 degrees). A spatio-temporal upsampling and interpolation method to cope with fast motion is also proposed in order to improve motion estimation. The proposed protocol is versatile and straightforward. It is compatible with all MRI systems and may provide insights on the origins of specific motion artifacts. The MRI and artificial intelligence research communities could benefit from this work to build in-vivo labeled datasets of motion-corrupted MRI images suitable for training/testing any retrospective motion correction or machine learning algorithm.


Asunto(s)
Artefactos , Inteligencia Artificial , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Plásticos , Estudios Prospectivos , Estudios Retrospectivos
8.
J Neuroimaging ; 32(1): 68-79, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506677

RESUMEN

BACKGROUND AND PURPOSE: Super-resolutionreconstruction (SRR) can be used to reconstruct 3-dimensional (3D) high-resolution (HR) volume from several 2-dimensional (2D) low-resolution (LR) stacks of MRI slices. The purpose is to compare lengthy 2D T2-weighted HR image acquisition of neonatal subjects with 3D SRR from several LR stacks in terms of image quality for clinical and morphometric assessments. METHODS: LR brain images were acquired from neonatal subjects to reconstruct isotropic 3D HR volumes by using SRR algorithm. Quality assessments were done by an experienced pediatric radiologist using scoring criteria adapted to newborn anatomical landmarks. The Wilcoxon signed-rank test was used to compare scoring results between HR and SRR images. For quantitative assessments, morphology-based segmentation was performed on both HR and SRR images and Dice coefficients between the results were computed. Additionally, simple linear regression was performed to compare the tissue volumes. RESULTS: No statistical difference was found between HR and SRR structural scores using Wilcoxon signed-rank test (p = .63, Z = .48). Regarding segmentation results, R2 values for the volumes of gray matter, white matter, cerebrospinal fluid, basal ganglia, cerebellum, and total brain volume including brain stem ranged between .95 and .99. Dice coefficients between the segmented regions from HR and SRR ranged between .83 ± .04 and .96 ± .01. CONCLUSION: Qualitative and quantitative assessments showed that 3D SRR of several LR images produces images that are of comparable quality to standard 2D HR image acquisition for healthy neonatal imaging without loss of anatomical details with similar edge definition allowing the detection of fine anatomical structures and permitting comparable morphometric measurement.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Niño , Humanos , Imagenología Tridimensional/métodos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA