Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 15(9): 926-37, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25150102

RESUMEN

Differentiating left and right hand sides during embryogenesis represents a major event in body patterning. Left-Right (L/R) asymmetry in bilateria is essential for handed positioning, morphogenesis and ultimately the function of organs (including the brain), with defective L/R asymmetry leading to severe pathologies in human. How and when symmetry is initially broken during embryogenesis remains debated and is a major focus in the field. Work done over the past 20 years, in both vertebrate and invertebrate models, has revealed a number of distinct pathways and mechanisms important for establishing L/R asymmetry and for spreading it to tissues and organs. In this review, we summarize our current knowledge and discuss the diversity of L/R patterning from cells to organs during evolution.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Desarrollo Embrionario/genética , Animales , Humanos , Invertebrados/genética , Vertebrados/genética
2.
Development ; 139(10): 1874-84, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22491943

RESUMEN

In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with ß-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by ß-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with ß-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Miosinas/metabolismo , Animales , Tipificación del Cuerpo/genética , Cadherinas/genética , Drosophila , Proteínas de Drosophila/genética , Inmunoprecipitación , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Miosinas/genética , Unión Proteica , beta Catenina/genética , beta Catenina/metabolismo
3.
Genesis ; 52(6): 471-80, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585718

RESUMEN

Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria.


Asunto(s)
Tipificación del Cuerpo/fisiología , Drosophila/genética , Drosophila/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Transducción de Señal , Animales , Regulación de la Expresión Génica , Morfogénesis/fisiología
4.
Nat Commun ; 9(1): 1942, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769531

RESUMEN

The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Miosinas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Polaridad Celular/genética , Cilios/genética , Cilios/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Determinación Derecha-Izquierda/genética , Factores de Determinación Derecha-Izquierda/metabolismo , Mutación , Miosinas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Dev Cell ; 33(6): 675-89, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26073018

RESUMEN

Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cadherinas/fisiología , Sistema Digestivo/crecimiento & desarrollo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Cadherinas/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Sistema Digestivo/citología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Insecto , Modelos Biológicos , Miosinas/genética , Miosinas/fisiología
6.
Dev Cell ; 24(1): 89-97, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23328400

RESUMEN

In Drosophila, left/right (LR) asymmetry is apparent in the directional looping of the gut and male genitalia. The dextral orientation of the organs depends on the activity of a single gene, MyosinID (myoID), whose mutation leads to a fully inverted LR axis, thus revealing the activity of a recessive sinistral pathway. Here, we present the identification of the Hox gene Abdominal-B (Abd-B) as an upstream regulator of LR determination. This role appears distinct from its function in anteroposterior patterning. We show that the Abd-Bm isoform binds to regulatory sequences of myoID and controls MyoID expression in the organ LR organizer. Abd-Bm is also required for the sinistral pathway. Thus, when Abd-B activity is missing, no symmetry breaking occurs and flies develop symmetrically. These findings identify the Hox gene Abd-B as directing the earliest events of LR asymmetry establishment in Drosophila.


Asunto(s)
Tipificación del Cuerpo , Anomalías del Sistema Digestivo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Tracto Gastrointestinal/metabolismo , Gónadas/metabolismo , Proteínas de Homeodominio/metabolismo , Miosina Tipo I/metabolismo , Animales , Anomalías del Sistema Digestivo/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Tracto Gastrointestinal/anomalías , Tracto Gastrointestinal/embriología , Gónadas/anomalías , Gónadas/embriología , Proteínas de Homeodominio/genética , Técnicas para Inmunoenzimas , Masculino , Miosina Tipo I/genética , Isoformas de Proteínas
7.
Curr Biol ; 20(19): 1773-8, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20832313

RESUMEN

Handed asymmetry in organ shape and positioning is a common feature among bilateria, yet little is known about the morphogenetic mechanisms underlying left-right (LR) organogenesis. We utilize the directional 360° clockwise rotation of genitalia in Drosophila to study LR-dependent organ looping. Using time-lapse imaging, we show that rotation of genitalia by 360° results from an additive process involving two ring-shaped domains, each undergoing 180° rotation. Our results show that the direction of rotation for each ring is autonomous and strictly depends on the LR determinant myosin ID (MyoID). Specific inactivation of MyoID in one domain causes rings to rotate in opposite directions and thereby cancels out the overall movement. We further reveal a specific pattern of apoptosis at the ring boundaries and show that local cell death is required for the movement of each domain, acting as a brake-releaser. These data indicate that organ looping can proceed through an incremental mechanism coupling LR determination and apoptosis. Furthermore, they suggest a model for the stepwise evolution of genitalia posture in Diptera, through the emergence and duplication of a 180° LR module.


Asunto(s)
Apoptosis/fisiología , Tipificación del Cuerpo/fisiología , Drosophila melanogaster , Organogénesis/fisiología , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Genitales/anatomía & histología , Genitales/embriología , Genitales/crecimiento & desarrollo , Imagen de Lapso de Tiempo
8.
Development ; 134(7): 1419-30, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17329360

RESUMEN

The Drosophila melanogaster body axes are defined by the precise localization and the restriction of molecular determinants in the oocyte. Polarization of the oocyte during oogenesis is vital for this process. The directed traffic of membranes and proteins is a crucial component of polarity establishment in various cell types and organisms. Here, we investigate the role of the small GTPase Rab6 in the organization of the egg chamber and in asymmetric determinant localization during oogenesis. We show that exocytosis is affected in rab6-null egg chambers, which display a loss of nurse cell plasma membranes. Rab6 is also required for the polarization of the oocyte microtubule cytoskeleton and for the posterior localization of oskar mRNA. We show that, in vivo, Rab6 is found in a complex with Bicaudal-D, and that Rab6 and Bicaudal-D cooperate in oskar mRNA localization. Thus, during Drosophila oogenesis, Rab6-dependent membrane trafficking is doubly required; first, for the general organization and growth of the egg chamber, and second, more specifically, for the polarization of the microtubule cytoskeleton and localization of oskar mRNA. These findings highlight the central role of vesicular trafficking in the establishment of polarity and in determinant localization in Drosophila.


Asunto(s)
Membrana Celular/fisiología , Polaridad Celular/fisiología , Drosophila melanogaster/embriología , Oogénesis/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Western Blotting , Citoesqueleto/fisiología , Proteínas de Drosophila/metabolismo , Exocitosis/fisiología , Femenino , Inmunohistoquímica , Inmunoprecipitación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA