Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 450(7170): 717-20, 2007 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-18046410

RESUMEN

Morphogens act in developing tissues to control the spatial arrangement of cellular differentiation. The activity of a morphogen has generally been viewed as a concentration-dependent response to a diffusible signal, but the duration of morphogen signalling can also affect cellular responses. One such example is the morphogen sonic hedgehog (SHH). In the vertebrate central nervous system and limbs, the pattern of cellular differentiation is controlled by both the amount and the time of SHH exposure. How these two parameters are interpreted at a cellular level has been unclear. Here we provide evidence that changing the concentration or duration of SHH has an equivalent effect on intracellular signalling. Chick neural cells convert different concentrations of SHH into time-limited periods of signal transduction, such that signal duration is proportional to SHH concentration. This depends on the gradual desensitization of cells to ongoing SHH exposure, mediated by the SHH-dependent upregulation of patched 1 (PTC1), a ligand-binding inhibitor of SHH signalling. Thus, in addition to its role in shaping the SHH gradient, PTC1 participates cell autonomously in gradient sensing. Together, the data reveal a novel strategy for morphogen interpretation, in which the temporal adaptation of cells to a morphogen integrates the concentration and duration of a signal to control differential gene expression.


Asunto(s)
Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/farmacología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/citología , Tubo Neural/efectos de los fármacos , Tubo Neural/embriología , Tubo Neural/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Proteínas Oncogénicas/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra , Proteína con Dedos de Zinc GLI1
2.
PLoS One ; 5(8): e11996, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20711444

RESUMEN

BACKGROUND: Hedgehog (Hh) signaling, a vital signaling pathway for the development and homeostasis of vertebrate tissues, is mediated by members of the Gli family of zinc finger transcription factors. Hh signaling increases the transcriptional activity of Gli proteins, at least in part, by inhibiting their proteolytic processing. Conversely, phosphorylation by cAMP-dependent protein kinase (PKA) inhibits Gli transcriptional activity by promoting their ubiquitination and proteolysis. Whether other post-translational modifications contribute to the regulation of Gli protein activity has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we provide evidence that all three Gli proteins are targets of small ubiquitin-related modifier (SUMO)-1 conjugation. Expression of SUMO-1 or the SUMO E3 ligase, Pias1, increased Gli transcriptional activity in cultured cells. Moreover, PKA activity reduced Gli protein SUMOylation. Strikingly, in the embryonic neural tube, the forced expression of Pias1 increased Gli activity and induced the ectopic expression of the Gli dependent gene Nkx2.2. Conversely, a point mutant of Pias1, that lacks ligase activity, blocked the endogenous expression of Nkx2.2. CONCLUSIONS/SIGNIFICANCE: Together, these findings provide evidence that Pias1-dependent SUMOylation influences Gli protein activity and thereby identifies SUMOylation as a post-translational mechanism that regulates the hedgehog signaling pathway.


Asunto(s)
Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína SUMO-1/metabolismo , Ubiquitinación , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Factores de Transcripción de Tipo Kruppel/química , Lisina/metabolismo , Ratones , Células 3T3 NIH , Tubo Neural/citología , Tubo Neural/metabolismo , Proteínas Nucleares , Transducción de Señal , Factores de Transcripción , Transcripción Genética
3.
Development ; 133(3): 517-28, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16410413

RESUMEN

During CNS development, the proliferation of progenitors must be coordinated with the pattern of neuronal subtype generation. In the ventral neural tube, Sonic hedgehog acts as a long range morphogen to organise the pattern of cell differentiation by controlling the activity of Gli transcription factors. Here, we provide evidence that the same pathway also acts directly at long range to promote the proliferation and survival of progenitor cells. Blockade of Shh signaling or inhibition of Gli activity results in cell autonomous decreases in progenitor proliferation and survival. Conversely, positive Gli activity promotes proliferation and rescues the effects of inhibiting Shh signaling. Analysis of neural cells indicates that Shh/Gli signaling regulates the G1 phase of cell cycle and the expression of the anti-apoptotic factor Bcl2. Furthermore, Shh signaling independently regulates patterning, proliferation and survival of neural cells, thus Shh/Gli activity couples these separate cellular responses of progenitors to coordinate neural development.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Células Epiteliales/fisiología , Neuronas/fisiología , Proteínas Oncogénicas/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclo Celular/fisiología , Embrión de Pollo , Células Epiteliales/citología , Proteínas Hedgehog , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Morfogénesis , Neuronas/citología , Proteínas Oncogénicas/genética , Receptores Patched , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Madre/citología , Células Madre/fisiología , Transactivadores/genética , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA