Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Asunto principal
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(9): 240708, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233718

RESUMEN

Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species' latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet Morus bassanus colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138-60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81-71.23° N). Tracking data for 1118 individuals showed that foraging trip duration and maximum distance both increased with square-root colony size. Foraging effort also varied between years for the same colony, consistent with a link to environmental variability. Trip duration and maximum distance also decreased with latitude, after controlling for colony size. Our results are consistent with density-dependent reduction in prey availability influencing colony size and reveal reduced competition at the poleward range margin. This provides a mechanism for rapid population growth at northern colonies and, therefore, a poleward shift in response to environmental change. Further work is required to understand when and how colonial animals deplete nearby prey, along with the positive and negative effects of social foraging behaviour.

2.
Mov Ecol ; 11(1): 41, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488611

RESUMEN

BACKGROUND: State-space models, such as Hidden Markov Models (HMMs), are increasingly used to classify animal tracks into behavioural states. Typically, step length and turning angles of successive locations are used to infer where and when an animal is resting, foraging, or travelling. However, the accuracy of behavioural classifications is seldom validated, which may badly contaminate posterior analyses. In general, models appear to efficiently infer behaviour in species with discrete foraging and travelling areas, but classification is challenging for species foraging opportunistically across homogenous environments, such as tropical seas. Here, we use a subset of GPS loggers deployed simultaneously with wet-dry data from geolocators, activity measurements from accelerometers, and dive events from Time Depth Recorders (TDR), to improve the classification of HMMs of a large GPS tracking dataset (478 deployments) of red-billed tropicbirds (Phaethon aethereus), a poorly studied pantropical seabird. METHODS: We classified a subset of fixes as either resting, foraging or travelling based on the three auxiliary sensors and evaluated the increase in overall accuracy, sensitivity (true positive rate), specificity (true negative rate) and precision (positive predictive value) of the models in relation to the increasing inclusion of fixes with known behaviours. RESULTS: We demonstrate that even with a small informed sub-dataset (representing only 9% of the full dataset), we can significantly improve the overall behavioural classification of these models, increasing model accuracy from 0.77 ± 0.01 to 0.85 ± 0.01 (mean ± sd). Despite overall improvements, the sensitivity and precision of foraging behaviour remained low (reaching 0.37 ± 0.06, and 0.06 ± 0.01, respectively). CONCLUSIONS: This study demonstrates that the use of a small subset of auxiliary data with known behaviours can both validate and notably improve behavioural classifications of state space models of opportunistic foragers. However, the improvement is state-dependant and caution should be taken when interpreting inferences of foraging behaviour from GPS data in species foraging on the go across homogenous environments.

3.
Sci Rep ; 12(1): 6412, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440734

RESUMEN

Following the sudden appearance, and subsequent efforts to support the survival of a beluga whale (Delphinapterus leucas) speculated to have been previously trained off the coast of Norway, we investigate the animal's ability to readapt to life in the wild. Dietary DNA (dDNA) analysis was used to assess diet throughout this rehabilitation process, and during a return to unassisted foraging and self-feeding. Metabarcoding of feces collected throughout this process, confirmed the diversification of the beluga whale's diet to local prey. These findings are indicative of improved foraging behavior, and the ability of this individual to resume wild foraging following a period of dependency in managed care. New insight of digestion rates, and the time window during which prey detection through dDNA analysis is appropriate was also obtained. Beyond the case study presented here, we demonstrate the power of dDNA analysis as a non-intrusive tool to assess the diet of large mammals and track progress adapting to life in the wild following release from captivity and rehabilitation programs.


Asunto(s)
Ballena Beluga , Animales , ADN , Heces , Noruega
4.
Ecol Evol ; 10(1): 410-430, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31988734

RESUMEN

High juvenile mortality rates are typical of many long-lived marine vertebrate predators. Insufficient development in dive and forage ability is considered a key driver of this. However, direct links to survival outcome are sparse, particularly in free-ranging marine animals that may not return to land.In this study, we conduct exploratory investigations toward early mortality in juvenile southern elephant seals Mirounga leonina. Twenty postweaning pups were equipped with (a) a new-generation satellite relay data tag, capable of remotely transmitting fine-scale behavioral movements from accelerometers, and (b) a location transmitting only tag (so that mortality events could be distinguished from device failures). Individuals were followed during their first trip at sea (until mortality or return to land). Two analyses were conducted. First, the behavioral movements and encountered environmental conditions of nonsurviving pups were individually compared to temporally concurrent observations from grouped survivors. Second, common causes of mortality were investigated using Cox's proportional hazard regression and penalized shrinkage techniques.Nine individuals died (two females and seven males) and 11 survived (eight females and three males). All but one individual died before the return phase of their first trip at sea, and all but one were negatively buoyant. Causes of death were variable, although common factors included increased horizontal travel speeds and distances, decreased development in dive and forage ability, and habitat type visited (lower sea surface temperatures and decreased total [eddy] kinetic energy).For long-lived marine vertebrate predators, such as the southern elephant seal, the first few months of life following independence represent a critical period, when small deviations in behavior from the norm appear sufficient to increase mortality risk. Survival rates may subsequently be particularly vulnerable to changes in climate and environment, which will have concomitant consequences on the demography and dynamics of populations.

5.
Ecol Evol ; 9(1): 223-236, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680109

RESUMEN

Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post-breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.

6.
Methods Ecol Evol ; 9(1): 64-77, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29456829

RESUMEN

Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high-resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine-scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free-ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free-ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging. Future applications could however benefit from some adaption, particularly to reduce positive bias in transmitted PrCA behaviours and swimming effort, for which this study provides useful insight.

7.
Ecol Evol ; 7(17): 6766-6778, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904758

RESUMEN

In order to survive and later recruit into a population, juvenile animals need to acquire resources through the use of innate and/or learnt behaviors in an environment new to them. For far-ranging marine species, such as the wandering albatross Diomedea exulans, this is particularly challenging as individuals need to be able to rapidly adapt and optimize their movement strategies in response to the highly dynamic and heterogeneous nature of their open-ocean pelagic habitats. Critical to this is the development and flexibility of dispersal and exploratory behaviors. Here, we examine the movements of eight juvenile wandering albatrosses, tracked using GPS/Argos satellite transmitters for eight months following fledging, and compare these to the trajectories of 17 adults to assess differences and similarities in behavioral strategies through time. Behavioral clustering algorithms (Expectation Maximization binary Clustering) were combined with multinomial regression analyses to investigate changes in behavioral mode probabilities over time, and how these may be influenced by variations in day duration and in biophysical oceanographic conditions. We found that juveniles appeared to quickly acquire the same large-scale behavioral strategies as those employed by adults, although generally more time was spent resting at night. Moreover, individuals were able to detect and exploit specific oceanographic features in a manner similar to that observed in adults. Together, the results of this study suggest that while shortly after fledging juvenile wandering albatrosses are able to employ similar foraging strategies to those observed in adults, additional skills need to be acquired during the immature period before the efficiency of these behaviors matches that of adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA