Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33158990

RESUMEN

ß1,3-N-acetylglucosaminyltransferases (B3GNTs) are Golgi-resident glycosyltransferases involved in the biosynthesis of poly-N-acetyl-lactosamine chains. They catalyze the addition of the N-acetylglucosamine to the N-acetyl-lactosamine repeat as a key step of the chain elongation process. Poly-N-acetyl-lactosamine is involved in the immune system in many ways. Particularly, its long chain has been demonstrated to suppress excessive immune responses. Among the characterized B3GNTs, B3GNT2 is the major poly-N-acetyl-lactosamine synthase, and deletion of its coding gene dramatically reduced the cell surface poly-N-acetyl-lactosamine and led to hypersensitive and hyperresponsive immunocytes. Despite the extensive functional studies, no structural information is available to understand the molecular mechanism of B3GNT2, as well as other B3GNTs. Here we present the structural and kinetic studies of the human B3GNT2. Five crystal structures of B3GNT2 have been determined in the unliganded, donor substrate-bound, acceptor substrate-bound, and product(s)-bound states at resolutions ranging from 1.85 to 2.35 Å. Kinetic study shows that the transglycosylation reaction follows a sequential mechanism. Critical residues involved in recognition of both donor and acceptor substrates as well as catalysis are identified. Mutations of these invariant residues impair B3GNT2 activity in cell assays. Structural comparison with other glycosyltransferases such as mouse Fringe reveals a novel N-terminal helical domain of B3GNTs that may stabilize the catalytic domain and distinguish among different acceptor substrates.


Asunto(s)
Homeostasis , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Cristalografía por Rayos X , Humanos , Cinética , Conformación Proteica , Especificidad por Sustrato
2.
J Med Chem ; 66(23): 16120-16140, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37988652

RESUMEN

B3GNT2 is responsible for elongation of cell surface long-chain polylactosamine, which influences the regulation of the immune response, making it an attractive target for immunomodulation. In the development of amide containing B3GNT2 inhibitors guided by structure-based drug design, imidazolones were found to successfully serve as amide bioisosteres. This novel imidazolone isosteric strategy alleviated torsional strain of the amide bond on binding to B3GNT2 and improved potency, isoform selectivity, as well as certain physicochemical and pharmacokinetic properties. Herein, we present the synthesis, SAR, X-ray cocrystal structures, and in vivo PK properties of imidazol-4-ones in the context of B3GNT2 inhibition.


Asunto(s)
Amidas , N-Acetilglucosaminiltransferasas , Amidas/farmacología , Amidas/química , N-Acetilglucosaminiltransferasas/metabolismo , Diseño de Fármacos , Relación Estructura-Actividad
3.
J Clin Invest ; 130(1): 389-403, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600172

RESUMEN

Polymorphonuclear neutrophils (PMNs) are increasingly recognized to influence solid tumor development, but why their effects are so context dependent and even frequently divergent remains poorly understood. Using an autochthonous mouse model of uterine cancer and the administration of respiratory hyperoxia as a means to improve tumor oxygenation, we provide in vivo evidence that hypoxia is a potent determinant of tumor-associated PMN phenotypes and direct PMN-tumor cell interactions. Upon relief of tumor hypoxia, PMNs were recruited less intensely to the tumor-bearing uterus, but the recruited cells much more effectively killed tumor cells, an activity our data moreover suggested was mediated via their production of NADPH oxidase-derived reactive oxygen species and MMP-9. Simultaneously, their ability to promote tumor cell proliferation, which appeared to be mediated via their production of neutrophil elastase, was rendered less effective. Relieving tumor hypoxia thus greatly improved net PMN-dependent tumor control, leading to a massive reduction in tumor burden. Remarkably, this outcome was T cell independent. Together, these findings identify key hypoxia-regulated molecular mechanisms through which PMNs directly induce tumor cell death and proliferation in vivo and suggest that the contrasting properties of PMNs in different tumor settings may in part reflect the effects of hypoxia on direct PMN-tumor cell interactions.


Asunto(s)
Comunicación Celular/inmunología , Neoplasias Experimentales/inmunología , Neutrófilos/inmunología , Neoplasias Uterinas/inmunología , Animales , Hipoxia de la Célula/inmunología , Femenino , Ratones , Ratones Noqueados , Neoplasias Experimentales/patología , Neutrófilos/patología , Neoplasias Uterinas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA