Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631610

RESUMEN

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Asunto(s)
Grafito , Nanoestructuras , Óxido Nítrico , Grafito/química , Concentración de Iones de Hidrógeno , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestructuras/química , Humanos , Dipéptidos/química , Fenilalanina/química , Fenilalanina/análogos & derivados
2.
Am J Physiol Heart Circ Physiol ; 324(4): H430-H442, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735402

RESUMEN

The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Células Endoteliales/metabolismo , Miocardio/metabolismo , Biopterinas/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Infarto del Miocardio/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Óxido Nítrico/metabolismo
3.
Exp Physiol ; 108(6): 874-890, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184360

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the physiological roles of cardiomyocyte-derived tetrahydrobiopterin (BH4) in cardiac metabolism and stress response? What is the main finding and its importance? Cardiomyocyte BH4 has a physiological role in cardiac metabolism. There was a shift of substrate preference from fatty acid to glucose in hearts with targeted deletion of BH4 synthesis. The changes in fatty-acid metabolic profile were associated with a protective effect in response to ischaemia-reperfusion (IR) injury, and reduced infarct size. Manipulating fatty acid metabolism via BH4 availability could play a therapeutic role in limiting IR injury. ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) synthases in which its production of NO is crucial for cardiac function. However, non-canonical roles of BH4 have been discovered recently and the cell-specific role of cardiomyocyte BH4 in cardiac function and metabolism remains to be elucidated. Therefore, we developed a novel mouse model of cardiomyocyte BH4 deficiency, by cardiomyocyte-specific deletion of Gch1, which encodes guanosine triphosphate cyclohydrolase I, a required enzyme for de novo BH4 synthesis. Cardiomyocyte (cm)Gch1 mRNA expression and BH4 levels from cmGch1 KO mice were significantly reduced compared to Gch1flox/flox (WT) littermates. Transcriptomic analyses and protein assays revealed downregulation of genes involved in fatty acid oxidation in cmGch1 KO hearts compared with WT, accompanied by increased triacylglycerol concentration within the myocardium. Deletion of cardiomyocyte BH4 did not alter basal cardiac function. However, the recovery of left ventricle function was improved in cmGch1 KO hearts when subjected to ex vivo ischaemia-reperfusion (IR) injury, with reduced infarct size compared to WT hearts. Metabolomic analyses of cardiac tissue after IR revealed that long-chain fatty acids were increased in cmGch1 KO hearts compared to WT, whereas at 5 min reperfusion (post-35 min ischaemia) fatty acid metabolite levels were higher in WT compared to cmGch1 KO hearts. These results indicate a new role for BH4 in cardiomyocyte fatty acid metabolism, such that reduction of cardiomyocyte BH4 confers a protective effect in response to cardiac IR injury. Manipulating cardiac metabolism via BH4 could play a therapeutic role in limiting IR injury.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Óxido Nítrico Sintasa/metabolismo , Infarto/metabolismo , Ácidos Grasos/metabolismo
4.
Circulation ; 144(12): 961-982, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34255973

RESUMEN

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Asunto(s)
Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Hiperglucemia/inmunología , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Animales , Aterosclerosis/patología , Células Cultivadas , Diabetes Mellitus Experimental/patología , Endarterectomía Carotidea , Humanos , Hiperglucemia/patología , Leucocitos Mononucleares/patología , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
5.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34425095

RESUMEN

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Asunto(s)
Hígado Graso/enzimología , Fumarato Hidratasa/metabolismo , Resistencia a la Insulina , Hígado/enzimología , Macrófagos/enzimología , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Obesidad/enzimología , Animales , Carboxiliasas/genética , Carboxiliasas/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Hígado Graso/genética , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Obesidad/genética , Estrés Oxidativo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Succinatos/metabolismo
6.
Biochem Soc Trans ; 49(5): 2189-2198, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34665229

RESUMEN

Inflammation is a critical component of cardiovascular disease (CVD), encompassing coronary artery disease (CAD), cerebrovascular events and heart failure and is the leading cause of mortality worldwide. In recent years, metabolism has been placed centrally in the governance of the immune response. Termed immunometabolism, immune cells adapt cellular metabolic pathways to meet demands of activation and thus function. This rewiring influences not only the bioenergetics of the cell but altered metabolites act as signalling molecules to regulate cellular response. In this review, we focus on the TCA cycle derivative, itaconate, as one such metabolite with promising immunomodulatory and therapeutic potential in inflammatory cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Mediadores de Inflamación/metabolismo , Succinatos/metabolismo , Biomarcadores/metabolismo , Metabolismo Energético , Glucólisis , Humanos , Inflamación/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores
7.
Nitric Oxide ; 100-101: 17-29, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339668

RESUMEN

Macrophages are mononuclear phagocytes derived from haematopoietic progenitors that are widely distributed throughout the body. These cells participate in both innate and adaptive immune responses and lie central to the processes of inflammation, development, and homeostasis. Macrophage physiology varies depending on the environment in which they reside and they exhibit rapid functional adaption in response to external stimuli. To study macrophages in vitro, cells are typically cultured ex vivo from the peritoneum or alveoli, or differentiated from myeloid bone marrow progenitor cells to form bone marrow-derived macrophages (BMDMs). BMDMs represent an efficient and cost-effective means of studying macrophage biology. However, the inherent sensitivity of macrophages to biochemical stimuli (such as cytokines, metabolic intermediates, and RNS/ROS) makes it imperative to control experimental conditions rigorously. Therefore, the aim of this study was to establish an optimised and standardised method for the isolation and culture of BMDMs. We used classically activated macrophages isolated from WT and nitric oxide (NO)-deficient mice to develop a standardised culture method, whereby the constituents of the culture media are defined. We then methodically compared our standardised protocol to the most commonly used method of BMDM culture to establish an optimal protocol for the study of nitric oxide (NO)-redox biology and immunometabolism in vitro.


Asunto(s)
Macrófagos/citología , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Animales , Biopterinas/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Scand Cardiovasc J ; 52(3): 163-169, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29566572

RESUMEN

OBJECTIVE: Tetrahydrobiopterin (BH4) is the essential cofactor of endothelial nitric oxide synthase (eNOS) and intracellular levels of BH4 is regulated by oxidative stress. The aim of this paper was to describe the influence of exogenous endothelin-1 on intracellular BH4 and its oxidation products dihydrobiopterin (BH2) and biopterin (B) in a wide range of vascular tissue. DESIGN: Segments of internal mammary artery (IMA) and human saphenous vein (SV) from 41 patients undergoing elective surgery were incubated in ET-1 (0.1 µM). Aorta and lung from transgenic mice overexpressing ET-1 in the endothelium (ET-TG) were analysed with regards to intracellular biopterin levels. Human umbilical vein endothelial cells (HUVEC) were incubated in ET-1 (0.1 µM) and intracellular biopterin levels were analysed. From 6 healthy women undergoing caesarean section, subcutaneous fat was harvested and the resistance arteries in these biopsies were tested for ET-mediated endothelial dysfunction. RESULTS: In HUVEC, exogenous ET-1 (0.1 µM) did not significantly change intracellular BH4, 1.54 ± 1.7 vs 1.68 ± 1.8 pmol/mg protein; p = .8. In IMA and SV, exogenous ET-1(0.1 µM) did not change intracellular BH4 n = 10, p = .4. In aorta from wild type vs ET-TG mice there was no significant difference in intracellular BH4 between the groups: 1.3 ± 0.49 vs 1.23 ± 0.3 pmol/mg protein; p = .6. In resistance arteries (n = 6) BH4 together with DTE (an antioxidant) was not able to prevent ET-mediated endothelial dysfunction. CONCLUSION: ET-1 did not significantly alter intracellular tetrahydrobiopterin levels in IMA, SV, HUVEC or aorta from ET-TG mice. These findings are important for future research in ET-1 mediated superoxide production and endothelial dysfunction.


Asunto(s)
Biopterinas/análogos & derivados , Endotelina-1/farmacología , Arterias Mamarias/efectos de los fármacos , Vena Safena/efectos de los fármacos , Grasa Subcutánea/irrigación sanguínea , Anciano , Animales , Antioxidantes/farmacología , Aorta/metabolismo , Biopterinas/metabolismo , Línea Celular , Endotelina-1/genética , Endotelina-1/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Pulmón/metabolismo , Masculino , Arterias Mamarias/metabolismo , Ratones Transgénicos , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III , Embarazo , Vena Safena/metabolismo , Superóxidos/metabolismo , Técnicas de Cultivo de Tejidos , Vasodilatación/efectos de los fármacos
9.
Dev Biol ; 399(1): 129-138, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25557619

RESUMEN

INTRODUCTION: GTP cyclohydrolase I (GTPCH) catalyses the first and rate-limiting reaction in the synthesis of the enzymatic cofactor, tetrahydrobiopterin (BH4). Loss of function mutations in the GCH1 gene lead to congenital neurological diseases such as DOPA-responsive dystonia and hyperphenylalaninemia. However, little is known about how GTPCH and BH4 affects embryonic development in utero, and in particular whether metabolic replacement or supplementation in pregnancy is sufficient to rescue genetic GTPCH deficiency in the developing embryo. METHODS AND RESULTS: Gch1 deficient mice were generated by the insertion of loxP sites flanking exons 2-3 of the Gch1 gene. Gch1(fl/fl) mice were bred with Sox2cre mice to generate mice with global Gch1 deficiency. Genetic ablation of Gch1 caused embryonic lethality by E13.5. Despite loss of Gch1 mRNA and GTPCH enzymatic activity, whole embryo BH4 levels were maintained until E11.5, indicating sufficient maternal transfer of BH4 to reach this stage of development. After E11.5, Gch1(-/-) embryos were deficient in BH4, but an unbiased metabolomic screen indicated that the lethality was not due to a gross disturbance in metabolic profile. Embryonic lethality in Gch1(-/-) embryos was not caused by structural abnormalities, but was associated with significant bradycardia at E11.5. Embryonic lethality was not rescued by maternal supplementation of BH4, but was partially rescued, up to E15.5, by maternal supplementation of BH4 and l-DOPA. CONCLUSION: These findings demonstrate a requirement for Gch1 in embryonic development and have important implications for the understanding of pathogenesis and treatment of genetic BH4 deficiencies, as well as the identification of new potential roles for BH4.


Asunto(s)
Biopterinas/análogos & derivados , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , GTP Ciclohidrolasa/metabolismo , Animales , Biopterinas/metabolismo , Cromatografía Líquida de Alta Presión , Embrión de Mamíferos/embriología , Femenino , GTP Ciclohidrolasa/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Levodopa/metabolismo , Masculino , Espectrometría de Masas , Metabolómica , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
10.
J Physiol ; 594(14): 3981-92, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26752781

RESUMEN

KEY POINTS: Animal studies suggest an anti-fibrillatory action of the vagus nerve on the ventricle, although the exact mechanism is controversial. Using a Langendorff perfused rat heart, we show that the acetylcholine analogue carbamylcholine raises ventricular fibrillation threshold (VFT) and flattens the electrical restitution curve. The anti-fibrillatory action of carbamylcholine was prevented by the nicotinic receptor antagonist mecamylamine, inhibitors of neuronal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitric oxide (NO) donor sodium nitroprusside. Carbamylcholine increased NO metabolite content in the coronary effluent and this was prevented by mecamylamine. The anti-fibrillatory action of both carbamylcholine and sodium nitroprusside was ultimately dependent on muscarinic receptor stimulation as all effects were blocked by atropine. These data demonstrate a protective effect of carbamylcholine on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS-sGC dependent pathway. ABSTRACT: Implantable cardiac vagal nerve stimulators are a promising treatment for ventricular arrhythmia in patients with heart failure. Animal studies suggest the anti-fibrillatory effect may be nitric oxide (NO) dependent, although the exact site of action is controversial. We investigated whether a stable analogue of acetylcholine could raise ventricular fibrillation threshold (VFT), and whether this was dependent on NO generation and/or muscarinic/nicotinic receptor stimulation. VFT was determined in Langendorff perfused rat hearts by burst pacing until sustained VF was induced. Carbamylcholine (CCh, 200 nmol l(-1) , n = 9) significantly (P < 0.05) reduced heart rate from 292 ± 8 to 224 ± 6 b.p.m. Independent of this heart rate change, CCh caused a significant increase in VFT (control 1.5 ± 0.3 mA, CCh 2.4 ± 0.4 mA, wash 1.1 ± 0.2 mA) and flattened the restitution curve (n = 6) derived from optically mapped action potentials. The effect of CCh on VFT was abolished by a muscarinic (atropine, 0.1 µmol l(-1) , n = 6) or a nicotinic receptor antagonist (mecamylamine, 10 µmol l(-1) , n = 6). CCh significantly increased NOx content in coronary effluent (n = 8), but not in the presence of mecamylamine (n = 8). The neuronal nitric oxide synthase inhibitor AAAN (N-(4S)-4-amino-5-[aminoethyl]aminopentyl-N'-nitroguanidine; 10 µmol l(-1) , n = 6) or soluble guanylate cyclase (sGC) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 10 µmol l(-1) , n = 6) prevented the rise in VFT with CCh. The NO donor sodium nitrprusside (10 µmol l(-1) , n = 8) mimicked the action of CCh on VFT, an effect that was also blocked by atropine (n = 10). These data demonstrate a protective effect of CCh on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS/sGC-dependent pathway.


Asunto(s)
Óxido Nítrico/fisiología , Receptores Colinérgicos/fisiología , Fibrilación Ventricular/fisiopatología , Animales , Carbacol/farmacología , Cardiotónicos/farmacología , Agonistas Colinérgicos/farmacología , Técnicas In Vitro , Masculino , Ratas Sprague-Dawley
11.
Lancet ; 385 Suppl 1: S49, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312871

RESUMEN

BACKGROUND: The mechanism responsible for left ventricular dysfunction after cardiac surgery is only partly understood. In isolated rat hearts subjected to an ischaemia-reperfusion protocol, left ventricular dysfunction was associated with uncoupling of endothelial nitric oxide synthase (NOS) activity secondary to oxidation of the NOS cofactor, tetrahydrobiopterin (BH4). Here we investigated the effect of cardiopulmonary bypass and reperfusion on myocardial nitroso-redox balance in patients undergoing cardiac surgery. METHODS: From 116 patients who underwent elective cardiac surgery on cardiopulmonary bypass, paired samples of the right atrial appendages were obtained before venous cannulation of the right atrium and after myocardial reperfusion. Superoxide production from atrial samples was measured by lucigenin (5 µmol/L) enhanced chemiluminescence and 2-hydroxyethidium (2-OHE) detection by high-performance liquid chromatography (HPLC). BH4, oxidised biopterins, GTP-cyclohydrolase 1 (GTPCH-1, the rate-limiting enzyme in BH4 synthesis), and NOS activity ((14)C L-arginine to L-citrulline conversion) were measured by HPLC. FINDINGS: Atrial superoxide production increased significantly after reperfusion (from mean 37·83 relative light units per s per mg [SE 3·71] before cannulation to 65·02 [6·01] after reperfusion, p<0·0001; n=46 samples from 23 patients) due to increased mitochondrial and NOX2 oxidase activity (by 309% and 149%; p=0·002 and p=0·0002, respectively) and uncoupling of NOS activity. Atrial content of BH4 after perfusion was reduced (by 32%, p=0·001), as was activity of GTPCH1 (50%, p<0·0001). NOS activity decreased significantly after reperfusion (60%, p=0·0005) and this reduction was not affected by BH4 supplementation (10 µM) or NOX2 inhibition ex vivo. Instead, we identified increased endothelial NOS s-glutathionylation as the main mechanism for NOS uncoupling after reperfusion. Reversing NOS s-glutathionylation with dithiothreitol (100 µmol/L) completely restored NOS activity after reperfusion (p=0·34). INTERPRETATION: Our findings suggest that NOS s-glutathionylation, rather than BH4 depletion, accounts for NOS dysfunction in patients after cardiac surgery and cardiopulmonary bypass. FUNDING: British Heart Foundation.

12.
J Inherit Metab Dis ; 39(2): 309-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26830550

RESUMEN

Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15% of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90% reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Biopterinas/análogos & derivados , Distribución de la Grasa Corporal , Obesidad Abdominal/genética , Liasas de Fósforo-Oxígeno/genética , Alelos , Animales , Biopterinas/biosíntesis , Biopterinas/genética , Peso Corporal/genética , Colesterol/genética , Femenino , Genotipo , Glucosa/genética , Heterocigoto , Homocigoto , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo III/genética , Fenilalanina/genética , Transcriptoma/genética
13.
J Neurosci ; 34(47): 15751-63, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411503

RESUMEN

Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Células Ciliadas Auditivas/fisiología , Audición/genética , Audición/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Proliferación Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Eliminación de Gen , Ratones , Ratones Noqueados
14.
Circulation ; 129(25): 2661-72, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24807872

RESUMEN

BACKGROUND: Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. METHODS AND RESULTS: A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II-mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45(+) inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II-induced vascular smooth muscle cell ROS production. CONCLUSIONS: These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II-mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.


Asunto(s)
Aneurisma de la Aorta/epidemiología , Disección Aórtica/epidemiología , Susceptibilidad a Enfermedades/epidemiología , Endotelio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Disección Aórtica/etiología , Disección Aórtica/metabolismo , Angiotensina II/efectos adversos , Animales , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/etiología , Susceptibilidad a Enfermedades/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
J Biol Chem ; 288(1): 561-9, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23139420

RESUMEN

Endothelial nitric-oxide synthase (eNOS) is a critical regulator of vascular homeostasis by generation of NO that is dependent on the cofactor tetrahydrobiopterin (BH4). When BH4 availability is limiting, eNOS becomes "uncoupled," resulting in superoxide production in place of NO. Recent evidence suggests that eNOS uncoupling can also be induced by S-glutathionylation, although the functional relationships between BH4 and S-glutathionylation remain unknown. To address a possible role for BH4 in S-glutathionylation-induced eNOS uncoupling, we expressed either WT or mutant eNOS rendered resistant to S-glutathionylation in cells with Tet-regulated expression of human GTP cyclohydrolase I to regulate intracellular BH4 availability. We reveal that S-glutathionylation of eNOS, by exposure to either 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or glutathione reductase-specific siRNA, results in diminished NO production and elevated eNOS-derived superoxide production, along with a concomitant reduction in BH4 levels and BH4:7,8-dihydrobiopterin ratio. In eNOS uncoupling induced by BH4 deficiency, BCNU exposure further exacerbates superoxide production, BH4 oxidation, and eNOS activity. Following mutation of C908S, BCNU-induced eNOS uncoupling and BH4 oxidation are abolished, whereas uncoupling induced by BH4 deficiency was preserved. Furthermore, BH4 deficiency alone is alone sufficient to reduce intracellular GSH:GSSG ratio and cause eNOS S-glutathionylation. These data provide the first evidence that BH4 deficiency- and S-glutathionylation-induced mechanisms of eNOS uncoupling, although mechanistically distinct, are functionally related. We propose that uncoupling of eNOS by S-glutathionylation- or by BH4-dependent mechanisms exemplifies eNOS as an integrated redox "hub" linking upstream redox-sensitive effects of BH4 and glutathione with redox-dependent targets and pathways that lie downstream of eNOS.


Asunto(s)
Biopterinas/análogos & derivados , Regulación Enzimológica de la Expresión Génica , Glutatión/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Animales , Aniones , Biopterinas/química , Carmustina/farmacología , Glutatión Reductasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Modelos Biológicos , Modelos Genéticos , Mutación , Células 3T3 NIH , Oxígeno/química , Interferencia de ARN , Superóxidos/metabolismo
16.
J Biol Chem ; 288(41): 29836-45, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23965989

RESUMEN

Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.


Asunto(s)
Biopterinas/análogos & derivados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Triptófano/metabolismo , Células 3T3 , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Biocatálisis , Biopterinas/química , Biopterinas/metabolismo , Western Blotting , Dominio Catalítico , Humanos , Ratones , Modelos Moleculares , Mutación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Oxidación-Reducción , Multimerización de Proteína , Superóxidos/metabolismo , Triptófano/genética
17.
Circ Res ; 111(6): 718-27, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798524

RESUMEN

RATIONALE: Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOS). Oral BH4 supplementation preserves cardiac function in animal models of cardiac disease; however, the mechanisms underlying these findings are not completely understood. OBJECTIVE: To study the effect of myocardial transgenic overexpression of the rate-limiting enzyme in BH4 biosynthesis, GTP cyclohydrolase 1 (GCH1), on NOS activity, myocardial function, and Ca2+ handling. METHODS AND RESULTS: GCH1overexpression significantly increased the biopterins level in left ventricular (LV) myocytes but not in the nonmyocyte component of the LV myocardium or in plasma. The ratio between BH4 and its oxidized products was lower in mGCH1-Tg, indicating that a large proportion of the myocardial biopterin pool was oxidized; nevertheless, myocardial NOS1 activity was increased in mGCH1-Tg, and superoxide release was significantly reduced. Isolated hearts and field-stimulated LV myocytes (3 Hz, 35°C) overexpressing GCH1 showed a faster relaxation and a PKA-mediated increase in the PLB Ser16 phosphorylated fraction and in the rate of decay of the [Ca2+]i transient. RyR2 S-nitrosylation and diastolic Ca2+ leak were larger in mGCH1-Tg and ICa density was lower; nevertheless the amplitude of the [Ca2+]i transient and contraction did not differ between genotypes, because of an increase in the SR fractional release of Ca2+ in mGCH1-Tg myocytes. Xanthine oxidoreductase inhibition abolished the difference in superoxide production but did not affect myocardial function in either group. By contrast, NOS1 inhibition abolished the differences in ICa density, Ser16 PLB phosphorylation, [Ca2+]i decay, and myocardial relaxation between genotypes. CONCLUSIONS: Myocardial GCH1 activity and intracellular BH4 are a limiting factor for constitutive NOS1 and SERCA2A activity in the healthy myocardium. Our findings suggest that GCH1 may be a valuable target for the treatment of LV diastolic dysfunction.


Asunto(s)
Biopterinas/análogos & derivados , GTP Ciclohidrolasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Biopterinas/metabolismo , Biopterinas/farmacología , Calcio/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Femenino , GTP Ciclohidrolasa/genética , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Miocardio/citología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Superóxidos/metabolismo
18.
Eur Heart J ; 34(43): 3378-88, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23008511

RESUMEN

AIMS: Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. METHODS AND RESULTS: Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). CONCLUSION: Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/patología , Endotelio Vascular/patología , Stents , Animales , Aspirina/farmacología , Stents Liberadores de Fármacos , Fibrinolíticos/farmacología , Masculino , Ratones , Ratones Endogámicos , Neointima/patología , Paclitaxel/farmacología , Moduladores de Tubulina/farmacología
19.
Redox Biol ; 72: 103144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613920

RESUMEN

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Asunto(s)
Grafito , Óxido Nítrico , Grafito/química , Óxido Nítrico/metabolismo , Humanos , Nanoestructuras/química , Porosidad , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/administración & dosificación , Proliferación Celular/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
20.
J Biol Chem ; 287(52): 43665-73, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23091050

RESUMEN

Myocardial constitutive No production depends on the activity of both endothelial and neuronal NOS (eNOS and nNOS, respectively). Stimulation of myocardial ß(3)-adrenergic receptor (ß(3)-AR) produces a negative inotropic effect that is dependent on eNOS. We evaluated whether nNOS also plays a role in ß(3)-AR signaling and found that the ß(3)-AR-mediated reduction in cell shortening and [Ca(2+)](i) transient amplitude was abolished both in eNOS(-/-) and nNOS(-/-) left ventricular (LV) myocytes and in wild type LV myocytes after nNOS inhibition with S-methyl-L-thiocitrulline. LV superoxide (O(2)(·-)) production was increased in nNOS(-/-) mice and reduced by L-N(ω)-nitroarginine methyl ester (L-NAME), indicating uncoupling of eNOS activity. eNOS S-glutathionylation and Ser-1177 phosphorylation were significantly increased in nNOS(-/-) myocytes, whereas myocardial tetrahydrobiopterin, eNOS Thr-495 phosphorylation, and arginase activity did not differ between genotypes. Although inhibitors of xanthine oxidoreductase (XOR) or NOX2 NADPH oxidase caused a similar reduction in myocardial O(2)(·-), only XOR inhibition reduced eNOS S-glutathionylation and Ser-1177 phosphorylation and restored both eNOS coupled activity and the negative inotropic and [Ca(2+)](i) transient response to ß(3)-AR stimulation in nNOS(-/-) mice. In summary, our data show that increased O(2)(·-) production by XOR selectively uncouples eNOS activity and abolishes the negative inotropic effect of ß(3)-AR stimulation in nNOS(-/-) myocytes. These findings provide unequivocal evidence of a functional interaction between the myocardial constitutive NOS isoforms and indicate that aspects of the myocardial phenotype of nNOS(-/-) mice result from disruption of eNOS signaling.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas Musculares/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Arginasa/genética , Arginasa/metabolismo , Señalización del Calcio/efectos de los fármacos , Citrulina/análogos & derivados , Citrulina/farmacología , Inhibidores Enzimáticos/farmacología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/enzimología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Miocardio/citología , Miocitos Cardíacos/citología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/inmunología , Superóxidos/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA