Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 182(4): 976-991.e19, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32702314

RESUMEN

Although complex inflammatory-like alterations are observed around the amyloid plaques of Alzheimer's disease (AD), little is known about the molecular changes and cellular interactions that characterize this response. We investigate here, in an AD mouse model, the transcriptional changes occurring in tissue domains in a 100-µm diameter around amyloid plaques using spatial transcriptomics. We demonstrate early alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes (OLIGs), whereas a multicellular gene co-expression network of plaque-induced genes (PIGs) involving the complement system, oxidative stress, lysosomes, and inflammation is prominent in the later phase of the disease. We confirm the majority of the observed alterations at the cellular level using in situ sequencing on mouse and human brain sections. Genome-wide spatial transcriptomics analysis provides an unprecedented approach to untangle the dysregulated cellular network in the vicinity of pathogenic hallmarks of AD and other brain diseases.


Asunto(s)
Enfermedad de Alzheimer/patología , Análisis de Secuencia de ADN/métodos , Transcriptoma , Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Estrés Oxidativo/genética
2.
Nat Immunol ; 18(3): 313-320, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28068307

RESUMEN

Notch2 and B cell antigen receptor (BCR) signaling determine whether transitional B cells become marginal zone B (MZB) or follicular B (FoB) cells in the spleen, but it is unknown how these pathways are related. We generated Taok3-/- mice, lacking the serine/threonine kinase Taok3, and found cell-intrinsic defects in the development of MZB but not FoB cells. Type 1 transitional (T1) B cells required Taok3 to rapidly respond to ligation by the Notch ligand Delta-like 1. BCR ligation by endogenous or exogenous ligands induced the surface expression of the metalloproteinase ADAM10 on T1 B cells in a Taok3-dependent manner. T1 B cells expressing surface ADAM10 were committed to becoming MZB cells in vivo, whereas T1 B cells lacking expression of ADAM10 were not. Thus, during positive selection in the spleen, BCR signaling causes immature T1 B cells to become receptive to Notch ligands via Taok3-mediated surface expression of ADAM10.


Asunto(s)
Proteína ADAM10/metabolismo , Inmunidad Adaptativa , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Linfocitos B/fisiología , Diferenciación Celular , Linaje de la Célula , Centro Germinal/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Células Cultivadas , Selección Clonal Mediada por Antígenos , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Receptor Notch2/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal
3.
Mol Cell ; 50(6): 831-43, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23685073

RESUMEN

The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of patients with X-linked intellectual disability presenting mutations in the Rad6a (Ube2a) gene, which encodes for an E2 ubiquitin-conjugating enzyme. Drosophila deficient for dRad6 display defective synaptic function as a consequence of mitochondrial failure. Similarly, mouse mRad6a (Ube2a) knockout and patient-derived hRad6a (Ube2a) mutant cells show defective mitochondria. Using in vitro and in vivo ubiquitination assays, we show that RAD6A acts as an E2 ubiquitin-conjugating enzyme that, in combination with an E3 ubiquitin ligase such as Parkin, ubiquitinates mitochondrial proteins to facilitate the clearance of dysfunctional mitochondria in cells. Hence, we identify RAD6A as a regulator of Parkin-dependent mitophagy and establish a critical role for RAD6A in maintaining neuronal function.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mitofagia , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Estudios de Casos y Controles , Línea Celular , Niño , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Estudios de Asociación Genética , Humanos , Cinética , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología , Mutación Missense , Unión Neuromuscular/metabolismo , Linaje , Análisis de Secuencia de ADN , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Desacopladores/farmacología
4.
J Biol Chem ; 290(5): 2798-811, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25527497

RESUMEN

Mutations in the PINK1 gene cause early-onset recessive Parkinson disease. PINK1 is a mitochondrially targeted kinase that regulates multiple aspects of mitochondrial biology, from oxidative phosphorylation to mitochondrial clearance. PINK1 itself is also phosphorylated, and this might be linked to the regulation of its multiple activities. Here we systematically analyze four previously identified phosphorylation sites in PINK1 for their role in autophosphorylation, substrate phosphorylation, and mitophagy. Our data indicate that two of these sites, Ser-228 and Ser-402, are autophosphorylated on truncated PINK1 but not on full-length PINK1, suggesting that the N terminus has an inhibitory effect on phosphorylation. We furthermore establish that phosphorylation of these PINK1 residues regulates the phosphorylation of the substrates Parkin and Ubiquitin. Especially Ser-402 phosphorylation appears to be important for PINK1 function because it is involved in Parkin recruitment and the induction of mitophagy. Finally, we identify Thr-313 as a residue that is critical for PINK1 catalytic activity, but, in contrast to previous reports, we find no evidence that this activity is regulated by phosphorylation. These data clarify the regulation of PINK1 through multisite phosphorylation.


Asunto(s)
Proteínas Quinasas/metabolismo , Serina/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación , Proteínas Quinasas/química , Serina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
iScience ; 27(4): 109136, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510136

RESUMEN

In neurons, it is commonly assumed that mitochondrial replication only occurs in the cell body, after which the mitochondria must travel to the neuron's periphery. However, while mitochondrial DNA replication has been observed to occur away from the cell body, the specific mechanisms involved remain elusive. Using EdU-labelling in mouse primary neurons, we developed a tool to determine the mitochondrial replication rate. Taking of advantage of microfluidic devices, we confirmed that mitochondrial replication also occurs locally in the periphery of neurons. To achieve this, mitochondria require de novo nuclear-encoded, but not mitochondrial-encoded protein translation. Following a proteomic screen comparing synaptic with non-synaptic mitochondria, we identified two elongation factors - eEF1A1 and TUFM - that were upregulated in synaptic mitochondria. We found that mitochondrial replication is impaired upon the downregulation of eEF1A1, and this is particularly relevant in the periphery of neurons.

6.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599670

RESUMEN

Wnt signaling is crucial for synapse and cognitive function. Indeed, deficient Wnt signaling is causally related to increased expression of DKK1, an endogenous negative Wnt regulator, and synapse loss, both of which likely contribute to cognitive decline in Alzheimer's disease (AD). Increasingly, AD research efforts have probed the neuroinflammatory role of microglia, the resident immune cells of the CNS, which have furthermore been shown to be modulated by Wnt signaling. The DKK1 homolog DKK2 has been previously identified as an activated response and/or disease-associated microglia (DAM/ARM) gene in a mouse model of AD. Here, we performed a detailed analysis of DKK2 in mouse models of neurodegeneration, and in human AD brain. In APP/PS1 and APPNL-G-F AD mouse model brains as well as in SOD1G93A ALS mouse model spinal cords, but not in control littermates, we demonstrated significant microgliosis and microglial Dkk2 mRNA upregulation in a disease-stage-dependent manner. In the AD models, these DAM/ARM Dkk2+ microglia preferentially accumulated close to ßAmyloid plaques. Furthermore, recombinant DKK2 treatment of rat hippocampal primary neurons blocked WNT7a-induced dendritic spine and synapse formation, indicative of an anti-synaptic effect similar to that of DKK1. In stark contrast, no such microglial DKK2 upregulation was detected in the postmortem human frontal cortex from individuals diagnosed with AD or pathologic aging. In summary, the difference in microglial expression of the DAM/ARM gene DKK2 between mouse models and human AD brain highlights the increasingly recognized limitations of using mouse models to recapitulate facets of human neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Humanos , Ratas , Animales , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Vía de Señalización Wnt , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas
7.
Science ; 381(6663): 1176-1182, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708272

RESUMEN

Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.


Asunto(s)
Enfermedad de Alzheimer , Necroptosis , Neuronas , ARN Largo no Codificante , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Xenoinjertos , Necroptosis/genética , Neuronas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
8.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188873

RESUMEN

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Asunto(s)
Enfermedad de Alzheimer , Hormonas Hipotalámicas , Ratones , Animales , Enfermedad de Alzheimer/genética , Neuronas/fisiología , Hormonas Hipofisarias , Sueño , Ratones Transgénicos
9.
Cell Rep ; 40(8): 111280, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001964

RESUMEN

Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo
10.
J Neurosci ; 30(14): 4833-44, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20371803

RESUMEN

The metalloproteinase and major amyloid precursor protein (APP) alpha-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10(-/-) mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10 conditional knock-out (cKO) mice using a Nestin-Cre promotor, limiting ADAM10 inactivation to neural progenitor cells (NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells. Premature neuronal differentiation is associated with aberrant neuronal migration and a disorganized laminar architecture in the neocortex. Neurospheres derived from Adam10 cKO mice have a disrupted sphere organization and segregated more neurons at the expense of astrocytes. We found that Notch-1 processing was affected, leading to downregulation of several Notch-regulated genes in Adam10 cKO brains, in accordance with the central role of ADAM10 in this signaling pathway and explaining the neurogenic phenotype. Finally, we found that alpha-secretase-mediated processing of APP was largely reduced in these neurons, demonstrating that ADAM10 represents the most important APP alpha-secretase in brain. Our study reveals that ADAM10 plays a central role in the developing brain by controlling mainly Notch-dependent pathways but likely also by reducing surface shedding of other neuronal membrane proteins including APP.


Asunto(s)
Proteínas ADAM/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Proteínas de la Membrana/fisiología , Proteínas ADAM/deficiencia , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Femenino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Receptores Notch/biosíntesis , Receptores Notch/metabolismo
11.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033742

RESUMEN

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/terapia , Ratones , MicroARNs/genética , Neurogénesis
12.
Alzheimers Res Ther ; 12(1): 100, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838792

RESUMEN

BACKGROUND: Intensive basic and preclinical research into Alzheimer's disease (AD) has yielded important new findings, but they could not yet been translated into effective therapies. One of the reasons is the lack of animal models that sufficiently reproduce the complexity of human AD and the response of human brain circuits to novel treatment approaches. As a step in overcoming these limitations, new App knock-in models have been developed that avoid transgenic APP overexpression and its associated side effects. These mice are proposed to serve as valuable models to examine Aß-related pathology in "preclinical AD." METHODS: Since AD as the most common form of dementia progresses into synaptic failure as a major cause of cognitive deficits, the detailed characterization of synaptic dysfunction in these new models is essential. Here, we addressed this by extracellular and whole-cell patch-clamp recordings in AppNL-G-F mice compared to AppNL animals which served as controls. RESULTS: We found a beginning synaptic impairment (LTP deficit) at 3-4 months in the prefrontal cortex of AppNL-G-F mice that is further aggravated and extended to the hippocampus at 6-8 months. Measurements of miniature EPSCs and IPSCs point to a marked increase in excitatory and inhibitory presynaptic activity, the latter accompanied by a moderate increase in postsynaptic inhibitory function. CONCLUSIONS: Our data reveal a marked impairment of primarily postsynaptic processes at the level of synaptic plasticity but the dominance of a presumably compensatory presynaptic upregulation at the level of elementary miniature synaptic function.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
J Cell Biol ; 167(5): 953-60, 2004 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-15583033

RESUMEN

Recent experimental and clinical retrospective studies support the view that reduction of brain cholesterol protects against Alzheimer's disease (AD). However, genetic and pharmacological evidence indicates that low brain cholesterol leads to neurodegeneration. This apparent contradiction prompted us to analyze the role of neuronal cholesterol in amyloid peptide generation in experimental systems that closely resemble physiological and pathological situations. We show that, in the hippocampus of control human and transgenic mice, only a small pool of endogenous APP and its beta-secretase, BACE 1, are found in the same membrane environment. Much higher levels of BACE 1-APP colocalization is found in hippocampal membranes from AD patients or in rodent hippocampal neurons with a moderate reduction of membrane cholesterol. Their increased colocalization is associated with elevated production of amyloid peptide. These results suggest that loss of neuronal membrane cholesterol contributes to excessive amyloidogenesis in AD and pave the way for the identification of the cause of cholesterol loss and for the development of specific therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/biosíntesis , Membrana Celular/metabolismo , Colesterol/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Biomarcadores/metabolismo , Compartimento Celular/fisiología , Células Cultivadas , Colesterol/deficiencia , Endopeptidasas , Hipocampo/citología , Hipocampo/fisiopatología , Humanos , Microdominios de Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Ratas , Fracciones Subcelulares/metabolismo , Antígenos Thy-1/metabolismo , Regulación hacia Arriba/fisiología
14.
J Cell Biol ; 216(3): 695-708, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28137779

RESUMEN

PINK1 is mutated in Parkinson's disease (PD), and mutations cause mitochondrial defects that include inefficient electron transport between complex I and ubiquinone. Neurodegeneration is also connected to changes in lipid homeostasis, but how these are related to PINK1-induced mitochondrial dysfunction is unknown. Based on an unbiased genetic screen, we found that partial genetic and pharmacological inhibition of fatty acid synthase (FASN) suppresses toxicity induced by PINK1 deficiency in flies, mouse cells, patient-derived fibroblasts, and induced pluripotent stem cell-derived dopaminergic neurons. Lower FASN activity in PINK1 mutants decreases palmitate levels and increases the levels of cardiolipin (CL), a mitochondrial inner membrane-specific lipid. Direct supplementation of CL to isolated mitochondria not only rescues the PINK1-induced complex I defects but also rescues the inefficient electron transfer between complex I and ubiquinone in specific mutants. Our data indicate that genetic or pharmacologic inhibition of FASN to increase CL levels bypasses the enzymatic defects at complex I in a PD model.


Asunto(s)
Cardiolipinas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Transporte de Electrón/fisiología , Proteínas Quinasas/metabolismo , Ubiquinona/metabolismo , Animales , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Ácido Graso Sintasas/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mitocondrias/metabolismo , Mutación/genética , Proteínas Quinasas/genética
16.
PLoS One ; 11(1): e0146083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26784449

RESUMEN

Mutations in the gene encoding the mitochondrial kinase PINK1 cause early-onset familial Parkinson's disease. To understand the biological function of PINK1 and its role in the pathogenesis of Parkinson's disease, it is useful to study its kinase activity towards substrates both in vivo and in vitro. For in vitro kinase assays, a purified Triboleum castaneum PINK1 insect orthologue is often employed, because it displays higher levels of activity when compared to human PINK1. We show, however, that the activity requirements, and more importantly the substrate specificity, differ between both orthologues. While Triboleum castaneum PINK1 readily phosphorylates the PINKtide peptide and Histone H1 in vitro, neither of these non-physiological substrates is phosphorylated by human PINK1. Nonetheless, both Tc and human PINK1 phosphorylate Parkin and Ubiquitin, two physiological substrates of PINK1. Our results show that the substrate selectivity differs among PINK1 orthologues, an important consideration that should be taken into account when extrapolating findings back to human PINK1.


Asunto(s)
Proteínas de Insectos/metabolismo , Proteínas Quinasas/metabolismo , Tribolium/enzimología , Secuencia de Aminoácidos , Animales , Histonas/metabolismo , Humanos , Proteínas de Insectos/química , Datos de Secuencia Molecular , Proteínas Quinasas/química , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
17.
Science ; 344(6180): 203-7, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24652937

RESUMEN

Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.


Asunto(s)
Proteínas de Drosophila/metabolismo , Complejo I de Transporte de Electrón/metabolismo , NADH Deshidrogenasa/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Humanos , Hígado/enzimología , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Fosforilación/genética , Proteoma , Serina/química , Serina/metabolismo
18.
Nat Cell Biol ; 11(11): 1340-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838174

RESUMEN

Gamma-secretase, an aspartyl protease that belongs to the iCLiPs (intramembrane cleaving proteases) family, is a multiprotein complex that consists of presenilin (PS), nicastrin (NCT), Aph-1 and Pen-2 (ref. 1). It is responsible for generation of the beta-amyloid peptide (Abeta), the primary component of senile plaques in the brains of patients with Alzheimer's disease. Although the four components are necessary and sufficient for gamma-secretase activity, additional proteins are possibly involved in its regulation. Consequently, we purified proteins associated with the active gamma-secretase complex from reconstituted PS-deficient fibroblasts, using tandem affinity purification (TAP) and identified a series of proteins that transiently interact with the gamma-secretase complex and are probably involved in complex maturation, membrane trafficking and, importantly, the tetraspanin web. Tetraspanins form detergent-resistant microdomains in the cell membrane and regulate cell adhesion, cell signalling and proteolysis. Association of the gamma-secretase complex with tetraspanin-enriched microdomains provides an explanation for the previously documented localization of gamma-secretase to raft-like domains. Thus, these studies suggest that maintenance of the integrity of tetraspanin microdomains contributes to the refinement of proteolytic activity of the gamma-secretase complex.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Ratones , Ratones Noqueados , Unión Proteica
19.
Science ; 324(5927): 639-42, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19299585

RESUMEN

The gamma-secretase complex plays a role in Alzheimer's disease and cancer progression. The development of clinically useful inhibitors, however, is complicated by the role of the gamma-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different gamma-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B gamma-secretase in a mouse Alzheimer's disease model led to improvements of Alzheimer's disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total gamma-secretase activity in the human brain, and thus specific targeting of Aph1B-containing gamma-secretase complexes may help generate less toxic therapies for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Endopeptidasas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Endopeptidasas/química , Endopeptidasas/genética , Femenino , Humanos , Aprendizaje por Laberinto , Proteínas de la Membrana/metabolismo , Memoria , Ratones , Neuronas/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal
20.
EMBO Rep ; 7(7): 739-45, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16729020

RESUMEN

gamma-Secretase-dependent regulated intramembrane proteolysis of amyloid precursor protein (APP) releases the APP intracellular domain (AICD). The question of whether this domain, like the Notch intracellular domain, is involved in nuclear signalling is highly controversial. Although some reports suggest that AICD regulates the expression of KAI1, glycogen synthase kinase-3beta, Neprilysin and APP, we found no consistent effects of gamma-secretase inhibitors or of genetic deficiencies in the gamma-secretase complex or the APP family on the expression levels of these genes in cells and tissues. Finally, we demonstrate that Fe65, an important AICD-binding protein, transactivates a wide variety of different promoters, including the viral simian virus 40 promoter, independent of AICD coexpression. Overall, the four currently proposed target genes are at best indirectly and weakly influenced by APP processing. Therefore, inhibition of APP processing to decrease Abeta generation in Alzheimer's disease will not interfere significantly with the function of these genes.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/deficiencia , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas , Células COS , Línea Celular , Chlorocebus aethiops , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Membranas/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA