Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240126

RESUMEN

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Asunto(s)
Anticuerpos Monoclonales , Proteómica , Cricetinae , Animales , Cricetulus , Proteómica/métodos , Células CHO , Anticuerpos Monoclonales/química , Cromatografía en Gel , Proteína Estafilocócica A/química
2.
Biotechnol Bioeng ; 121(1): 291-305, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877536

RESUMEN

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.


Asunto(s)
Anticuerpos Monoclonales , Cricetinae , Animales , Humanos , Anticuerpos Monoclonales/química , Reproducibilidad de los Resultados , Cricetulus , Espectrometría de Masas , Células CHO
3.
Biotechnol Bioeng ; 120(6): 1592-1604, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36814367

RESUMEN

There is significant interest in identifying the preferred binding domains of biological products to various chromatographic materials. In this work, we develop a biophysical technique that uses diethyl pyrocarbonate (DEPC) based covalent labeling in concert with enzymatic digestion and mass spectrometry to identify the binding patches for proteins bound to commercially available multimodal (MM) cation exchange chromatography resins. The technique compares the changes in covalent labeling of the protein in solution and in the bound state and uses the differences in this labeling to identify residues that are sterically shielded upon resin binding and, therefore, potentially involved in the resin binding process. Importantly, this approach enables the labeling of many amino acids and can be carried out over a pH range of 5.5-7.5, thus enabling the protein surface mapping at conditions of interest in MM cation exchange systems. The protocol is first developed using the model protein ubiquitin and the results indicate that lysine residues located on the front face of the protein show dramatic changes in DEPC labeling while residues present on other regions have minimal or no reductions. This indicates that the front face of ubiquitin is likely involved in resin binding. In addition, surface property maps indicate that the hypothesized front face binding region consists of overlapping positively charged and hydrophobic patches. The technique is then employed with an IgG1 FC and the results indicate that residues on the CH 2-CH 3 interface and the hinge are significantly sterically shielded upon binding to the resin. Further, these regions are again associated with significant overlap of positively charged and hydrophobic patches. On the other hand, while, residues on the CH 2 and the front face of the IgG1 FC also exhibited some changes in DEPC labeling upon binding, these regions have less distinct charged and hydrophobic patches. Importantly, the hypothesized binding patches identified for both ubiquitin and FC using this approach are shown to be consistent with previously reported NMR studies. In contrast to NMR, this new approach enables the identification of preferred binding regions without the need for isotopically labeled proteins or chemical shift assignments. The technique developed in this work sets the stage for the evaluation of the binding domains of a wide range of biological products to chromatographic surfaces, with important implications for designing biomolecules with improved biomanufacturability properties.


Asunto(s)
Resinas de Intercambio de Catión , Ubiquitina , Ubiquitina/química , Inmunoglobulina G , Espectrometría de Masas , Lisina
4.
Biotechnol Bioeng ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485847

RESUMEN

In this work, the implications of AAV9 capsid design and column reuse on AAV9 vector product quality were assessed with POROS CaptureSelect (PCS) AAVX and AAV9 resins using sf9 insect cell-derived model AAV9 vectors with varying viral protein (VP) ratios. Chromatographic experiments with purified drug substance AAV9 model feeds indicated consistent vector elution profiles, independent of adeno-associated virus (AAV) VP ratio, or cycle number. In contrast, the presence of process impurities in the clarified lysate feeds resulted in clear changes in the elution patterns. This included increased aggregate content in the vector eluates over multiple cycles as well as clear differences in the performance of these affinity resin systems. The AAV9-serotype specific PCS AAV9 column, with lower vector elution pH, resulted in higher aggregate content over multiple cycles as compared to the serotype-independent PCS AAVX column. Further, the results with vectors of varying VP ratio indicated that while one vector type eluate displayed higher aggregation in both affinity columns over column reuse, the eluate with the other vector type did not exhibit changes in the aggregation profile. Interestingly, vector aggregates in the affinity eluates also contained double-stranded DNA impurities and histone proteins, with similar trends to the aggregate levels. This behavior upon column reuse indicates that these host cell impurities are likely carried over to subsequent runs due to incomplete clean-in-place (CIP). These results indicate that feed impurities, affinity resin characteristics, elution pH, column CIP, and vector stability can impact the reusability of AAV affinity columns and product quality.

5.
Biotechnol Bioeng ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565527

RESUMEN

The significant increase in product titers, coupled with the growing focus on continuous bioprocessing, has renewed interest in using precipitation as a low-cost alternative to Protein A chromatography for the primary capture of monoclonal antibody (mAb) products. In this work, a commercially relevant mAb was purified from clarified cell culture fluid using a tubular flow precipitation reactor with dewatering and washing provided by tangential flow microfiltration. The particle morphology was evaluated using an inline high-resolution optical probe, providing quantitative data on the particle size distribution throughout the precipitation process. Data were obtained in both a lab-built 2-stage countercurrent washing system and a commercial countercurrent contacting skid that provided 4 stages of continuous washing. The processes were operated continuously for 2 h with overall mAb yield of 92 ± 3% and DNA removal of nearly 3 logs in the 4-stage system. The high DNA clearance was achieved by selective redissolution of the mAb using a low pH acetate buffer. Host cell protein clearance was 0.59 ± 0.08 logs, comparable to that based on model predictions. The process mass intensity was slightly better than typical Protein A processes and could be significantly improved by preconcentration of the antibody feed material.

6.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36585356

RESUMEN

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Asunto(s)
Productos Biológicos , Agregado de Proteínas , Cricetinae , Animales , Humanos , Cricetulus , Anticuerpos Monoclonales , Proteómica/métodos , Células CHO
7.
Clin Infect Dis ; 75(Suppl 1): S61-S71, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607747

RESUMEN

BACKGROUND: Male sex and old age are risk factors for severe coronavirus disease 2019, but the intersection of sex and aging on antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has not been characterized. METHODS: Plasma samples were collected from older adults (aged 75-98 years) before and after 3 doses of SARS-CoV-2 mRNA vaccination, and from younger adults (aged 18-74 years) post-dose 2, for comparison. Antibody binding to SARS-CoV-2 antigens (spike protein [S], S receptor-binding domain, and nucleocapsid), functional activity against S, and live-virus neutralization were measured against the vaccine virus and the Alpha, Delta, and Omicron variants of concern (VOCs). RESULTS: Vaccination induced greater antibody titers in older females than in older males, with both age and frailty associated with reduced antibody responses in males but not females. Responses declined significantly in the 6 months after the second dose. The third dose restored functional antibody responses and eliminated disparities caused by sex, age, and frailty in older adults. Responses to the VOCs, particularly the Omicron variant, were significantly reduced relative to the vaccine virus, with older males having lower titers to the VOCs than older females. Older adults had lower responses to the vaccine and VOC viruses than younger adults, with greater disparities in males than in females. CONCLUSIONS: Older and frail males may be more vulnerable to breakthrough infections owing to low antibody responses before receipt of a third vaccine dose. Promoting third dose coverage in older adults, especially males, is crucial to protecting this vulnerable population.


Asunto(s)
COVID-19 , Fragilidad , Vacunas Virales , Anciano , COVID-19/prevención & control , Humanos , Masculino , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
8.
Biotechnol Bioeng ; 119(1): 211-225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687215

RESUMEN

In this article, a systematic workflow was formulated and implemented to understand selectivity differences and preferred binding patches for bispecific monoclonal antibodies (mAbs) and their parental mAbs on three multimodal cation exchange resin systems. This workflow incorporates chromatographic screening of the parent mAbs and their fragments at various pH followed by surface property mapping and protein footprinting using covalent labeling followed by liquid chromatography-mass spectrometry analysis. The chromatography screens on multimodal resins with the intact mAbs indicated enhanced selectivity as compared to single-mode interaction systems. While the bispecific antibody (bsAb) eluted between the two parental mAbs on most of the resins, the retention of the bispecific transitioned from co-eluting with one parental mAb to the other parental mAb on Capto MMC. To investigate the contribution of different domains, mAb fragments were evaluated and the results indicated that the interactions were likely dominated by the Fab domain at higher pH. Protein surface property maps were then employed to hypothesize the potential preferred binding patches in the solvent-exposed regions of the parental Fabs. Finally, protein footprinting was carried out with the parental mAbs and the bsAb in the bound and unbound states at pH 7.5 to identify the preferred binding patches. Results with the intact mAb analysis supported the hypothesis that interactions with the resins were primarily driven by the residues in the Fab fragments and not the Fc. Furthermore, peptide mapping data indicated that the light chain may be playing a more important role in the higher binding of Parent A as compared with Parent B in these resin systems. Finally, results with the bsAb indicated that both halves of the molecule contributed to binding with the resins, albeit with subtle differences as compared to the parental mAbs. The workflow presented in this paper lays the foundation to systematically study the chromatographic selectivity of large multidomain molecules which can provide insights into improved biomanufacturability and expedited downstream bioprocess development.


Asunto(s)
Anticuerpos Biespecíficos , Cromatografía Liquida/métodos , Huella de Proteína/métodos , Anticuerpos Biespecíficos/análisis , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/aislamiento & purificación , Anticuerpos Biespecíficos/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Unión Proteica , Propiedades de Superficie
9.
Biotechnol Bioeng ; 119(7): 1873-1889, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35377460

RESUMEN

The growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography. This study describes their integration into LigaGuard™, an affinity adsorbent featuring an equilibrium binding capacity of ~30 mg of HCPs per mL of resin as well as dynamic capacities up to 16 and 22 mg/ml at 1- and 2-min residence times, respectively. When evaluated against cell culture harvests with different mAb and HCP titers and properties, LigaGuard™ afforded high HCP clearance, with logarithmic removal values (LRVs) up to 1.5, and mAb yield above 90%. Proteomic analysis of the effluents confirmed the removal of high-risk HCPs, including cathepsins, histones, glutathione-S transferase, and lipoprotein lipases. Finally, combining LigaGuard™ for HCP removal with affinity adsorbents for product capture afforded a global mAb yield of 85%, and HCP and DNA LRVs > 4.


Asunto(s)
Anticuerpos Monoclonales , Proteómica , Animales , Anticuerpos Monoclonales/química , Células CHO , Técnicas de Cultivo de Célula , Cromatografía de Afinidad/métodos , Cricetinae , Cricetulus , Péptidos/química , Proteómica/métodos
10.
Biotechnol Bioeng ; 118(9): 3435-3446, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33782945

RESUMEN

Straight-through chromatography, wherein the eluate from one column passes directly onto another column without adjustment, is one strategy to integrate and intensify manufacturing processes for biologics. Development and optimization of such straight-through chromatographic processes is a challenge, however. Conventional high-throughput screening methods optimize each chromatographic step independently, with limited consideration for the connectivity of steps. Here, we demonstrate a method for the development and optimization of fully integrated, multi-column processes for straight-through purification. Selection of resins was performed using an in silico tool for the prediction of processes for straight-through purification based on a one-time characterization of host-cell proteins combined with the chromatographic behavior of the product. A two-step optimization was then conducted to determine the buffer conditions that maximized yield while minimizing process- and product-related impurities. This optimization of buffer conditions included a series of range-finding experiments on each individual column, similar to conventional screening, followed by the development of a statistical model for the fully integrated, multi-column process using design of experiments. We used this methodology to develop and optimize integrated purification processes for a single-domain antibody and a cytokine, obtaining yields of 88% and 86%, respectively, with process- and product-related variants reduced to phase-appropriate levels for nonclinical material.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Modelos Teóricos , Cromatografía , Ensayos Analíticos de Alto Rendimiento
11.
Biotechnol Bioeng ; 118(2): 809-822, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33107976

RESUMEN

In this study, the binding of multimodal chromatographic ligands to the IgG1 FC domain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated 15 N-labeled FC domain indicated that while single-mode ion exchange ligands interacted very weakly throughout the FC surface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC . The multimodal ligand-binding sites on the FC were concentrated in the hinge region and near the interface of the CH 2 and CH 3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FC corroborated molecular-level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand-FC binding in these preferred regions was shown to be electrostatic interactions and π-π stacking of surface-exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular-level understanding of multimodal ligand-FC interactions and sets the stage for future analyses of even more complex biotherapeutics.


Asunto(s)
Sitios de Unión de Anticuerpos , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Humanos
12.
Biotechnol Bioeng ; 118(9): 3348-3358, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33624832

RESUMEN

Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.


Asunto(s)
Anticuerpos Antivirales , Subtipo H1N1 del Virus de la Influenza A/inmunología , Rotavirus/inmunología , Saccharomycetales/crecimiento & desarrollo , Anticuerpos de Cadena Única , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/aislamiento & purificación
13.
Langmuir ; 37(41): 12188-12203, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34633195

RESUMEN

In this study, NMR and molecular dynamics simulations were employed to study IgG1 FC binding to multimodal surfaces. Gold nanoparticles functionalized with two multimodal cation-exchange ligands (Capto and Nuvia) were synthesized and employed to carry out solution-phase NMR experiments with the FC. Experiments with perdeuterated 15N-labeled FC and the multimodal surfaces revealed micromolar residue-level binding affinities as compared to millimolar binding affinities with these ligands in free solution, likely due to cooperativity and avidity effects. The binding of FC with the Capto ligand nanoparticles was concentrated near an aliphatic cluster in the CH2/CH3 interface, which corresponded to a focused hydrophobic region. In contrast, binding with the Nuvia ligand nanoparticles was more diffuse and corresponded to a large contiguous positive electrostatic potential region on the side face of the FC. Results with lower-ligand-density nanoparticles indicated a decrease in binding affinity for both systems. For the Capto ligand system, several aliphatic residues on the FC that were important for binding to the higher-density surface did not interact with the lower-density nanoparticles. In contrast, no significant difference was observed in the interacting residues on the FC to the high- and low-ligand density Nuvia surfaces. The binding affinities of FC to both multimodal-functionalized nanoparticles decreased in the presence of salt due to the screening of multiple weak interactions of polar and positively charged residues. For the Capto ligand nanoparticle system, this resulted in an even more focused hydrophobic binding region in the interface of the CH2 and CH3 domains. Interestingly, for the Nuvia ligand nanoparticles, the presence of salt resulted in a large transition from a diffuse binding region to the same focused binding region determined for Capto nanoparticles at 150 mM salt. Molecular dynamics simulations corroborated the NMR results and provided important insights into the molecular basis of FC binding to these different multimodal systems containing clustered (observed at high-ligand densities) and nonclustered ligand surfaces. This combined biophysical and simulation approach provided significant insights into the interactions of FC with multimodal surfaces and sets the stage for future analyses with even more complex biotherapeutics.


Asunto(s)
Nanopartículas del Metal , Simulación de Dinámica Molecular , Oro , Inmunoglobulina G , Ligandos , Espectroscopía de Resonancia Magnética
14.
Electrophoresis ; 41(9): 705-713, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32031267

RESUMEN

Separation of DNA by length using CGE is a mature field. Separation of DNA by sequence, in contrast, is a more difficult problem. Existing techniques generally rely upon changes in intrinsic or induced differences in conformation. Previous work in our group showed that sets of ssDNA of the same length differing in sequence by as little as a single base could be separated by CZE using simple buffers at high ionic strength. Here, we explore the basis of the separation using circular dichroism spectroscopy, fluorescence anisotropy, and small angle X-ray scattering. The results reveal sequence-dependent differences among the same length strands, but the trends in the differences are not correlated to the migration order of the strands in the CZE separation. They also indicate that the separation is based on intrinsic differences among the strands that do not change with increasing ionic strength; rather, increasing ionic strength has a greater effect on electroosmotic mobility in the normal direction than on electrophoretic mobility of the strands in the reverse direction. This increases the migration time of the strands in the normal direction, allowing more time for the same-length strands to be teased apart based on very small differences in the intrinsic properties of the strands of different sequence. Regression analysis was used to model the intrinsic differences among DNA strands in order to gain insight into the relationship between mobility and sequence that underlies the separation.


Asunto(s)
ADN de Cadena Simple/química , ADN de Cadena Simple/aislamiento & purificación , Electroforesis Capilar/métodos , Colorantes Fluorescentes/química , Concentración Osmolar , Análisis de Secuencia de ADN
15.
Langmuir ; 36(31): 9054-9063, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32589849

RESUMEN

Multimodal chromatography uses multiple modes of interaction such as charge, hydrophobic, or hydrogen bonding to separate proteins. Recently, we used molecular dynamics (MD) simulations to show that ligands immobilized on surfaces can interact and associate with neighboring ligands to form hydrophobic and charge patches, which may have important implications for the nature of protein-surface interactions. Here, we study interfacial systems of increasing complexity-from a single immobilized multimodal ligand to high density surfaces-to better understand how ligand behavior is affected by the presence of a surface and the presence of other ligands in the vicinity, and how this behavior scales to larger systems. We find that tethering a ligand to a surface restricts its conformations to a subset of those observed in free solution, yet the ligand maintains flexibility in the plane of the surface and can form contacts with neighboring ligands. We find that although the formation of a contact between two neighboring ligands is slightly unfavorable, three neighboring ligands exhibit a preference for the formation of a fully connected cluster. To explore how these trends in ligand association extend to a larger surface with high density of ligands, we performed coarse-grained Monte Carlo (MC) simulations of a 132-ligand surface using ligand interactions parametrized based on free energies obtained from the three-ligand MD simulations. Despite their simplicity, the coarse-grained simulations qualitatively capture the cluster size distribution of ligands observed in detailed MD simulations. Quantitative differences between the two suggest opportunities for improvements in the coarse-grained energy function for efficient predictions of cluster and pattern formations. Our approach presents a promising route to the engineering of multimodal patterns for future chromatographic resin design.

16.
Biotechnol Bioeng ; 116(7): 1684-1697, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30882893

RESUMEN

Cathepsin D has been identified as a challenge to remove in downstream bioprocessing of monoclonal antibodies (mAbs) due to interactions with some mAbs. This study focused on investigating the mechanisms of interaction between cathepsin D and two industrial mAbs using a combined experimental and computational approach. Surface plasmon resonance was used to study the impact of pH and salt concentration on these protein-protein interactions. While salt had a moderate effect on the interactions with one of the mAbs, the other mAb demonstrated highly salt-dependent association behavior. Cathepsin D binding to the mAbs was also seen to be highly pH dependent, with operation at pH 9 resulting in a significant decrease in the binding affinity. Protein-protein docking simulations identified three interaction sites on both mAbs; near the complementarity determining region (CDR), in the hinge, and in the CH 3 domain. In contrast, only one face of cathepsin D was identified to interact with all the three sites on the mAbs. Surface property analysis revealed that the binding regions on the mAbs contained strong hydrophobic clusters and were predominantly negatively charged. In contrast, the binding site on cathepsin D was determined to be highly positively charged and hydrophobic, indicating that these protein-protein interactions were likely due to a combination of hydrophobic and electrostatic interactions. Finally, covalent crosslinking coupled with mass spectrometry was used to validate the docking predictions and to further investigate the regions of interaction involved in mAb-cathepsin D binding. A strong agreement was observed between the two approaches, and the CDR loops were identified to be important for cathepsin D interactions. This study establishes a combined experimental and computational platform that can be used to probe mAb-host cell protein (HCP) interactions of importance in biomanufacturing.


Asunto(s)
Anticuerpos Monoclonales/química , Catepsina D/química , Resonancia por Plasmón de Superficie , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Electricidad Estática
17.
Biotechnol Bioeng ; 116(9): 2178-2190, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081177

RESUMEN

Integrated designs of chromatographic processes for purification of biopharmaceuticals provides potential gains in operational efficiency and reductions of costs and material requirements. We describe a combined method using screening and in silico algorithms for ranking chromatographic steps to rapidly design orthogonally selective integrated processes for purifying protein therapeutics from both process- and product-related impurities. IFN-α2b produced in Pichia pastoris containing a significant product variant challenge was used as a case study. The product and product-related variants were screened on a set of 14 multimodal, ion exchange, and hydrophobic charge induction chromatography resins under various pH and salt linear gradient conditions. Data generated from reversed-phase chromatography of the fractions collected were used to generate a retention database for IFN-α2b and its variants. These data, in combination with a previously constructed process-related impurity database for P. pastoris, were input into an in silico process development tool that generated and ranked all possible integrated chromatographic sequences for their ability to remove both process and product-related impurities. Top-ranking outputs guided the experimental refinement of two successful three step purification processes, one comprising all bind-elute steps and the other having two bind-elute steps and a flowthrough operation. This approach suggests a new platform-like approach for rapidly designing purification processes for a range of proteins where separations of both process- and product-related impurities are needed.


Asunto(s)
Simulación por Computador , Interferón-alfa/química , Interferón-alfa/aislamiento & purificación , Cromatografía por Intercambio Iónico , Pichia , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
18.
Langmuir ; 35(51): 16770-16779, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31603330

RESUMEN

Multimodal chromatography is a powerful tool which uses multiple modes of interaction, such as charge and hydrophobicity, to purify protein-based therapeutics. In this work, we performed molecular dynamics simulations of a series of multimodal cation-exchange ligands immobilized on a hydrophilic self-assembled monolayer surface at the commercially relevant surface density (1 ligand/nm2). We found that ligands that were flexible and terminated in a hydrophobic group had a propensity to aggregate on the surface, while less flexible ligands containing a hydrophobic group closer to the surface did not aggregate. For aggregating ligands, this resulted in the formation of a surface pattern that contained relatively large patches of hydrophobicity and charge whose sizes exceeded the length scale of the individual ligands. On the other hand, lowering the surface density to 1 ligand/3 nm2 reduced or eliminated this aggregation behavior. In addition, the introduction of a flexible linker (corresponding to the commercially available ligand) enhanced cluster formation and allowed aggregation to occur at lower surface densities. Further, the use of flexible linkers enabled hydrophobic groups to collapse to the surface, reducing their accessibility. Finally, we developed an approach for quantifying differences in the observed surface patterns by calculating distributions of the patch size and patch length. This clustering phenomenon is likely to play a key role in governing protein-surface interactions in multimodal chromatography. This new understanding of multimodal surfaces has important implications for developing improved predictive models and designing new classes of multimodal separation materials.

19.
Anal Chem ; 90(4): 2609-2617, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29212318

RESUMEN

In this work, quartz crystal microbalance with dissipation (QCM-D) was employed to study the kinetic processes involved in the interaction of proteins with self-assembled monolayers (SAMs) of multimodal (MM) ligands. SAMs were fabricated to mimic two chromatographic multimodal resins with varying accessibility of the aromatic moiety to provide a well-defined model system. Kinetic parameters were determined for two different proteins in the presence of the arginine and guanidine and a comparison was made with chromatographic retention data. The results indicated that the accessibility of the ligand's aromatic moiety can have an important impact on the kinetics and chromatographic retention behavior. Interestingly, arginine and guanidine had very different effects on the protein adsorption and desorption kinetics in these MM systems. For cytochrome C, arginine resulted in a significant decrease and increase in the adsorption and desorption rates, respectively, while guanidine produced a dramatic increase in the desorption rate, with minimal effect on the adsorption rate. In addition, at different concentrations of arginine, two distinct kinetic scenarios were observed. For α-chymotrypsin, the presence of 0.1 M guanidine in the aromatic exposed ligand system produced an increase in the adsorption rate and only a moderate increase in the desorption rate, which helped to explain the surprising increase in the chromatographic salt elution concentration. These results demonstrate that protein adsorption kinetics in the presence of different mobile phase modifiers and MM ligand chemistries can play an important role in contributing to selectivity in MM chromatography.


Asunto(s)
Quimotripsina/aislamiento & purificación , Citocromos c/aislamiento & purificación , Tecnicas de Microbalanza del Cristal de Cuarzo , Adsorción , Quimotripsina/química , Quimotripsina/metabolismo , Citocromos c/química , Cinética , Ligandos , Modelos Moleculares , Estructura Molecular , Espectroscopía de Fotoelectrones , Unión Proteica , Propiedades de Superficie
20.
Biotechnol Bioeng ; 115(8): 2048-2060, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679482

RESUMEN

In this study, we describe a new approach for the characterization of process-related impurities along with an in silico tool to generate orthogonal, integrated downstream purification processes for biological products. A one-time characterization of process-related impurities from product expression in Pichia pastoris was first carried out using linear salt and pH gradients on a library of multimodal, salt-tolerant, and hydrophobic charge induction chromatographic resins. The Reversed-phase ultra-performance liquid chromatography (UPLC) analysis of the fractions from these gradients was then used to generate large data sets of impurity profiles. A retention database of the biological product was also generated using the same linear salt and pH gradients on these resins, without fraction collection. The resulting two data sets were then analyzed using an in silico tool, which incorporated integrated manufacturing constraints to generate and rank potential three-step purification sequences based on their predicted purification performance as well as whole-process "orthogonality" for impurity removal. Highly ranked sequences were further examined to identify templates for process development. The efficacy of this approach was successfully demonstrated for the rapid development of robust integrated processes for human growth hormone and granulocyte-colony stimulating factor.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Biotecnología/métodos , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Tecnología Farmacéutica/métodos , Precipitación Química , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Pichia/genética , Sales (Química)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA