Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Eur J Neurol ; 28(7): 2280-2293, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33547839

RESUMEN

BACKGROUND AND PURPOSE: Foveal changes were reported in aquaporin-4 antibody (AQP4-Ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) patients; however, it is unclear whether they are independent of optic neuritis (ON), stem from subclinical ON or crossover from ON in fellow eyes. Fovea morphometry and a statistical classification approach were used to investigate if foveal changes in NMOSD are independent of ON and progressive. METHODS: This was a retrospective longitudinal study of 27 AQP4-IgG + NMOSD patients (49 eyes; 15 ON eyes and 34 eyes without a history of ON [NON eyes]), follow-up median (first and third quartile) 2.32 (1.33-3.28), and 38 healthy controls (HCs) (76 eyes), follow-up median (first and third quartile) 1.95 (1.83-2.54). The peripapillary retinal nerve fibre layer thickness and the volume of combined ganglion cell and inner plexiform layer as measures of neuroaxonal damage from ON were determined by optical coherence tomography. Nineteen foveal morphometry parameters were extracted from macular optical coherence tomography volume scans. Data were analysed using orthogonal partial least squares discriminant analysis and linear mixed effects models. RESULTS: At baseline, foveal shape was significantly altered in ON eyes and NON eyes compared to HCs. Discriminatory analysis showed 81% accuracy distinguishing ON vs. HCs and 68% accuracy in NON vs. HCs. NON eyes were distinguished from HCs by foveal shape parameters indicating widening. Orthogonal partial least squares discriminant analysis discriminated ON vs. NON with 76% accuracy. In a follow-up of 2.4 (20.85) years, no significant time-dependent foveal changes were found. CONCLUSION: The parafoveal area is altered in AQP4-Ab seropositive NMOSD patients suggesting independent neuroaxonal damage from subclinical ON. Longer follow-ups are needed to confirm the stability of the parafoveal structure over time.


Asunto(s)
Neuromielitis Óptica , Neuritis Óptica , Acuaporina 4 , Humanos , Estudios Longitudinales , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/diagnóstico por imagen , Estudios Retrospectivos , Tomografía de Coherencia Óptica
2.
Am J Pathol ; 178(2): 794-802, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21281812

RESUMEN

IL-17-producing CD4(+) T cells (Th-17) contribute to the pathogenesis of experimental autoimmune encephalomyelitis and are associated with active disease in multiple sclerosis (MS). In addition to IL-17, Th-17 cells can also express IL-21, IL-22, and IL-6 under Th-17-polarizing conditions (IL-6 and transforming growth factor-ß). In this study we investigated IL-21 and IL-21 receptor (IL-21R) expression in MS lesions by in situ hybridization and immunohistochemistry. We detected strongly IL-21(+) infiltrating cells predominantly in acute but also in chronic active white matter MS lesions in which IL-21 expression was restricted to CD4(+) cells. In contrast, IL-21R was much more broadly distributed on CD4(+), CD19(+), and CD8(+) lymphocytes but not major histocompatibility complex class-II(+) macrophages/microglia. Interestingly, in cortical areas we detected both IL-21 and IL-21R expression by neurons. These findings suggest role(s) for IL-21 in both the acute and chronic stages of MS via direct effects on T and B lymphocytes and, demonstrated for the first time, also on neurons.


Asunto(s)
Encéfalo/patología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Subunidad alfa del Receptor de Interleucina-21/metabolismo , Interleucinas/metabolismo , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Enfermedad Aguda , Antígenos CD19/metabolismo , Linfocitos B/metabolismo , Encéfalo/metabolismo , Enfermedad Crónica , Humanos , Subunidad alfa del Receptor de Interleucina-21/genética , Interleucinas/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
3.
Brain ; 134(Pt 2): 571-84, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21233144

RESUMEN

Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions found in inflammatory lesions opens to allow influx of sodium and calcium ions, contributes to axonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, the extent and cellular distribution of acid-sensing ion channel 1 expression in neurons and glia in inflammatory lesions is unknown and, crucially, acid-sensing ion channel 1 expression has not been determined in multiple sclerosis lesions. Here we studied acute and chronic experimental autoimmune encephalomyelitis and multiple sclerosis spinal cord and optic nerve tissues to describe in detail the distribution of acid-sensing ion channel 1 and its relationship with neuronal and glial damage. We also tested the effects of amiloride treatment on tissue damage in the mouse models. We found that acid-sensing ion channel 1 was upregulated in axons and oligodendrocytes within lesions from mice with acute experimental autoimmune encephalomyelitis and from patients with active multiple sclerosis. The expression of acid-sensing ion channel 1 was associated with axonal damage as indicated by co-localization with the axonal injury marker beta amyloid precursor protein. Moreover, blocking acid-sensing ion channel 1 with amiloride protected both myelin and neurons from damage in the acute model, and when given either at disease onset or, more clinically relevant, at first relapse, ameliorated disability in mice with chronic-relapsing experimental autoimmune encephalomyelitis. Together these findings suggest that blockade of acid-sensing ion channel 1 has the potential to provide both neuro- and myelo-protective benefits in multiple sclerosis.


Asunto(s)
Axones/metabolismo , Enfermedades Desmielinizantes/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Canales de Sodio/biosíntesis , Canales Iónicos Sensibles al Ácido , Anciano , Amilorida/farmacología , Amilorida/uso terapéutico , Animales , Axones/efectos de los fármacos , Axones/patología , Técnicas de Cultivo de Célula , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/prevención & control , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple/patología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oligodendroglía/metabolismo , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Nervio Óptico/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Regulación hacia Arriba
4.
J Neurotrauma ; 35(19): 2259-2271, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29609523

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability, particularly among the young. Despite this, no disease-specific treatments exist. Recently, blood-brain barrier disruption and parenchymal fibrinogen deposition have been reported in acute traumatic brain injury and in long-term survival; however, their contribution to the neuropathology of TBI remains unknown. The presence of fibrinogen-a well-documented activator of microglia/macrophages-may be associated with neuroinflammation, and neuronal/axonal injury. To test this hypothesis, cases of human TBI with survival times ranging from 12 h to 13 years (survival <2 months, n = 15; survival >1 year, n = 6) were compared with uninjured controls (n = 15). Tissue was selected from the frontal lobe, temporal lobe, corpus callosum, cingulate gyrus, and brainstem, and the extent of plasma protein (fibrinogen and immunoglobulin G [IgG]) deposition, microglial/macrophage activation (CD68 and ionized calcium-binding adapter molecule 1 [Iba-1] immunoreactivity), neuronal density, and axonal transport impairment (ß-amyloid precursor protein [ßAPP] immunoreactivity) were assessed. Quantitative analysis revealed a significant increase in parenchymal fibrinogen and IgG deposition following acute TBI compared with long-term survival and control. Fibrinogen, but not IgG, was associated with microglial/macrophage activation and a significant reduction in neuronal density. Perivascular fibrinogen deposition also was associated with microglial/macrophage clustering and accrual of ßAPP in axonal spheroids, albeit rarely. These findings mandate the future exploration of causal relationships between fibrinogen deposition, microglia/macrophage activation, and potential neuronal loss in acute TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Inflamación/patología , Neuronas/patología , Adulto , Anciano , Lesiones Traumáticas del Encéfalo/metabolismo , Femenino , Fibrinógeno/metabolismo , Humanos , Activación de Macrófagos/fisiología , Masculino , Persona de Mediana Edad
5.
J Neurosci ; 24(20): 4832-9, 2004 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-15152043

RESUMEN

Peripheral nerve injury is known to upregulate the rapidly repriming Na(v)1.3 sodium channel within first-order spinal sensory neurons. In this study, we hypothesized that (1) after peripheral nerve injury, second-order dorsal horn neurons abnormally express Na(v)1.3, which (2) contributes to the responsiveness of these dorsal horn neurons and to pain-related behaviors. To test these hypotheses, adult rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, allodynia and hyperalgesia were evident. In situ hybridization, quantitative reverse transcription-PCR, and immunocytochemical analysis revealed upregulation of Na(v)1.3 in dorsal horn nociceptive neurons but not in astrocytes or microglia, and unit recordings demonstrated hyperresponsiveness of dorsal horn sensory neurons. Intrathecal antisense oligodeoxynucleotides targeting Na(v)1.3 decreased the expression of Na(v)1.3 mRNA and protein, reduced the hyperresponsiveness of dorsal horn neurons, and attenuated pain-related behaviors after CCI, all of which returned after cessation of antisense delivery. These results demonstrate for the first time that sodium channel expression is altered within higher-order spinal sensory neurons after peripheral nerve injury and suggest a link between misexpression of the Na(v)1.3 sodium channel and central mechanisms that contribute to neuropathic pain after peripheral nerve injury.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Dolor/fisiopatología , Neuropatía Ciática/fisiopatología , Canales de Sodio/metabolismo , Médula Espinal/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ligadura , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Dolor/etiología , Dimensión del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neuropatía Ciática/complicaciones , Neuropatía Ciática/metabolismo , Canales de Sodio/genética , Médula Espinal/efectos de los fármacos , Regulación hacia Arriba
6.
J Neurosci ; 24(30): 6765-75, 2004 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-15282281

RESUMEN

Voltage-gated sodium channels interact with cytosolic proteins that regulate channel trafficking and/or modulate the biophysical properties of the channels. Na(v)1.6 is heavily expressed at the nodes of Ranvier along adult CNS and PNS axons and along unmyelinated fibers in the PNS. In an initial yeast two-hybrid screen using the C terminus of Na(v)1.6 as a bait, we identified FHF2B, a member of the FGF homologous factor (FHF) subfamily, as an interacting partner of Na(v)1.6. Members of the FHF subfamily share approximately 70% sequence identity, and individual members demonstrate a cell- and tissue-specific expression pattern. FHF2 is abundantly expressed in the hippocampus and DRG neurons and colocalizes with Na(v)1.6 at mature nodes of Ranvier in myelinated sensory fibers in the dorsal root of the sciatic nerve. However, retinal ganglion cells and spinal ventral horn motor neurons show very low levels of FHF2 expression, and their axons exhibit no nodal FHF2 staining within the optic nerve and ventral root, respectively. Thus, FHF2 is selectively localized at nodes of dorsal root sensory but not ventral root motor axons. The coexpression of FHF2B and Na(v)1.6 in the DRG-derived cell line ND7/23 significantly increases the peak current amplitude and causes a 4 mV depolarizing shift of voltage-dependent inactivation of the channel. The preferential expression of FHF2B in sensory neurons may provide a basis for physiological differences in sodium currents that have been reported at the nodes of Ranvier in sensory versus motor axons.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Ganglios Espinales/química , Hipocampo/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/química , Nódulos de Ranvier/química , Canales de Sodio/metabolismo , Animales , Células del Asta Anterior/química , Axones/química , Axones/ultraestructura , Química Encefálica , Células Cultivadas/química , Factores de Crecimiento de Fibroblastos/análisis , Factores de Crecimiento de Fibroblastos/genética , Ganglios Espinales/citología , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/fisiología , Especificidad de Órganos , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Células Ganglionares de la Retina/química , Nervio Ciático/química , Nervio Ciático/citología , Canales de Sodio/análisis , Canales de Sodio/genética , Transfección , Técnicas del Sistema de Dos Híbridos
7.
J Neurosci ; 23(26): 8881-92, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14523090

RESUMEN

Spinal cord injury (SCI) can result in hyperexcitability of dorsal horn neurons and central neuropathic pain. We hypothesized that these phenomena are consequences, in part, of dysregulated expression of voltage-gated sodium channels. Because the rapidly repriming TTX-sensitive sodium channel Nav1.3 has been implicated in peripheral neuropathic pain, we investigated its role in central neuropathic pain after SCI. In this study, adult male Sprague Dawley rats underwent T9 spinal contusion injury. Four weeks after injury when extracellular recordings demonstrated hyperexcitability of L3-L5 dorsal horn multireceptive nociceptive neurons, and when pain-related behaviors were evident, quantitative RT-PCR, in situ hybridization, and immunocytochemistry revealed an upregulation of Nav1.3 in dorsal horn nociceptive neurons. Intrathecal administration of antisense oligodeoxynucleotides (ODNs) targeting Nav1.3 resulted in decreased expression of Nav1.3 mRNA and protein, reduced hyperexcitability of multireceptive dorsal horn neurons, and attenuated mechanical allodynia and thermal hyperalgesia after SCI. Expression of Nav1.3 protein and hyperexcitability in dorsal horn neurons as well as pain-related behaviors returned after cessation of antisense delivery. Responses to normally noxious stimuli and motor function were unchanged in SCI animals administered Nav1.3 antisense, and administration of mismatch ODNs had no effect. These results demonstrate for the first time that Nav1.3 is upregulated in second-order dorsal horn sensory neurons after nervous system injury, showing that SCI can trigger changes in sodium channel expression, and suggest a functional link between Nav1.3 expression and neuronal hyperexcitability associated with central neuropathic pain.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuralgia/fisiopatología , Neuronas/metabolismo , Células del Asta Posterior/fisiopatología , Canales de Sodio/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Recuento de Células , Modelos Animales de Enfermedad , Electrofisiología , Inmunohistoquímica , Hibridación in Situ , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/genética , Neuralgia/complicaciones , Neuronas/efectos de los fármacos , Neuronas/patología , Nociceptores/patología , Nociceptores/fisiopatología , Oligodesoxirribonucleótidos Antisentido/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Dimensión del Dolor , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética , Traumatismos de la Médula Espinal/complicaciones , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
8.
Trends Pharmacol Sci ; 25(11): 584-91, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15491781

RESUMEN

Following the loss of myelin from axons in multiple sclerosis, some axons recover the ability to conduct impulses despite the absence of an insulating sheath, providing a basis for remission of clinical deficits. By contrast, other axons degenerate and contribute to non-remitting clinical deficits and, thus, disability. Investigations using laboratory models of multiple sclerosis indicate that altered expression of two distinct isoforms of Na+ channels underlies these two processes, and the study of human tissue reveals similar changes in multiple sclerosis.


Asunto(s)
Axones/metabolismo , Esclerosis Múltiple/metabolismo , Canales de Sodio/metabolismo , Animales , Axones/patología , Modelos Animales de Enfermedad , Humanos , Esclerosis Múltiple/patología , Isoformas de Proteínas , Canales de Sodio/clasificación
9.
J Neuropathol Exp Neurol ; 62(9): 968-75, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14533785

RESUMEN

Multiple sclerosis (MS) is recognized to involve demyelination and axonal atrophy but accumulating evidence suggests that dysregulated sodium channel expression may also contribute to its pathophysiology. Recent studies have demonstrated that the expression of Na(v)1.8 voltage-gated sodium channels, which are normally undetectable within the CNS, is upregulated in cerebellar Purkinje cells in experimental allergic encephalomyelitis (EAE) and MS, and suggest that the aberrant expression of these channels contributes to clinical dysfunction by distorting the firing pattern of these neurons. In this study we examined the temporal pattern of upregulation for Na(v)1.8 mRNA and protein in chronic relapsing EAE by in situ hybridization and immunocytochemistry, respectively. Our results demonstrate a positive correlation between disease duration and degree of upregulation of Na(v)1.8 mRNA and protein in Purkinje neurons in chronic-relapsing EAE. The progressive deterioration in clinical baseline scores (i.e. in clinical scores during remissions) is paralleled by a continued increase in Na(v)1.8 mRNA and protein expression, but temporary worsening during relapses is not associated with transient changes in Na(v)1.8 expression. These results provide evidence that the expression of sodium channel Na(v)1.8 contributes to the development of clinical deficits in an in vivo model of neuroinflammatory disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Proteínas del Tejido Nervioso/biosíntesis , Células de Purkinje/metabolismo , Canales de Sodio/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Biozzi , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Canales de Sodio/genética
10.
Neuroreport ; 13(13): 1649-52, 2002 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12352620

RESUMEN

In this study, we examined the expression of insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) in dorsal root ganglia (DRG) neurons in two rodent models of nerve injury: sciatic nerve axotomy and streptozotocin-induced (STZ) painful diabetic neuropathy. We demonstrate that IGF-I and its receptor are preferentially expressed in small (< 25 microm diameter) DRG neurons. There is a significant down-regulation in the expression of IGF-I and IGF-IR in the small DRG neurons of STZ rats by 59% and 71%, respectively. A parallel reduction in expression is shown in axotomized < 25 microm diameter DRG neurons for IGF-I (47%) but not for IGF-IR. The loss of IGF-I support to a population of predominantly nociceptive neurons may contribute to neuropathic pain observed in these models.


Asunto(s)
Vías Aferentes/metabolismo , Regulación hacia Abajo/fisiología , Ganglios Espinales/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Vías Aferentes/fisiopatología , Animales , Axotomía , Tamaño de la Célula/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/fisiopatología , Inmunohistoquímica , Masculino , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neuralgia/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/cirugía
11.
Neuroreport ; 13(11): 1481-4, 2002 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-12167778

RESUMEN

Vasopressin is synthesized by neurons in the supraoptic nucleus of the hypothalamus and its release is controlled by action potentials produced by specific subtypes of voltage-gated sodium channels expressed in these neurons. The hyperosmotic state associated with uncontrolled diabetes mellitus causes elevated levels of plasma vasopressin, which are thought to contribute to the pathologic changes of diabetic nephropathy. We demonstrate here that in the rodent streptozotocin model of diabetes there are increases in expression of mRNA and protein for two sodium channel alpha-subunits and two beta-subunits in the neurons of the supraoptic nucleus. Transient and persistent sodium currents show parallel increases in these diabetic neurons. In the setting of chronic uncontrolled diabetes, these changes in sodium channel expression in the supraoptic nucleus may be maladaptive, contributing to the development of secondary renal complications.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Canales de Sodio/biosíntesis , Núcleo Supraóptico/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Masculino , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Canales de Sodio/genética , Regulación hacia Arriba/fisiología
12.
Neuroreport ; 14(4): 555-8, 2003 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-12657884

RESUMEN

The sensory neuron specific sodium channel Na(v)1.8 is normally detectable at only very low levels within cerebellar Purkinje cells. Annexin II light chain (p11) binds to the amino terminus of Na(v)1.8 and facilitates its functional expression within the cell membrane. We previously demonstrated that expression of Na(v)1.8 is up-regulated in cerebellar Purkinje cells in experimental allergic encephalomyelitis (EAE) and multiple sclerosis (MS). In this study we demonstrate that expression of p11 is significantly up-regulated in Purkinje cells in EAE (71 +/- 9.0% vs 21.3 +/- 4.9% in controls) and in MS(65.5 +/- 1.6% vs 21.8 +/- 6.2% in controls). We also demonstrate a high degree of co-expression of p11 and Na(v)1.8 (84.8 +/- 8.9%). Together with earlier results which show that experimental expression of Na(v)1.8 within Purkinje cells perturbs the temporal pattern of impulse generation in these cells, our results extend the evidence for an acquired channelopathy which interferes with cerebellar function in MS.


Asunto(s)
Anexina A2/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Células de Purkinje/metabolismo , Canales de Sodio/metabolismo , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inmunohistoquímica , Ratones , Esclerosis Múltiple/patología , Subunidades de Proteína , Células de Purkinje/fisiología , Regulación hacia Arriba
13.
Neurosci Lett ; 369(3): 186-90, 2004 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-15464262

RESUMEN

Recent studies have indicated that, in addition to demyelination and axonal degeneration, a third factor, dysregulated ion channel expression, contributes to the pathophysiology of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). Consistent with this suggestion, upregulated expression of sodium channel Na(v)1.8 is observed in Purkinje neurons in EAE and MS, and biophysical studies indicate that aberrant expression of Na(v)1.8 produces abnormal Purkinje cell firing which may contribute to the development of cerebellar ataxia. However, the molecular mechanisms that contribute to the upregulation of Na(v)1.8 in Purkinje cells in EAE and MS have not yet been determined. Previous studies have shown that neurotrophic factors can modulate sodium channel expression and that elevated levels of NGF are present in EAE and MS. Using immunocytochemical methods, we examined the relationship between the upregulation of Na(v)1.8 and the expression of the NGF receptors p75 and TrkA in EAE. Here we demonstrate that upregulation of Na(v)1.8 is associated with expression of p75 and low levels of TrkA in the majority of Purkinje cells in EAE. These findings, together with previous studies demonstrating a modulatory role of NGF on sodium channel expression, suggest that NGF acting via p75 contributes to the upregulation of Na(v)1.8 in Purkinje cells in EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Células de Purkinje/metabolismo , Canales de Sodio/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Técnica del Anticuerpo Fluorescente/métodos , Glicoproteínas/metabolismo , Ratones , Glicoproteína Mielina-Oligodendrócito , Canal de Sodio Activado por Voltaje NAV1.8 , Fragmentos de Péptidos/metabolismo , Receptor trkA/metabolismo , Factores de Transcripción , Regulación hacia Arriba
14.
Am J Pathol ; 172(1): 146-55, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18156204

RESUMEN

Recent findings in the animal model for multiple sclerosis (MS), experimental autoimmune encephalomyelitis, implicate a novel CD4+ T-cell subset (TH17), characterized by the secretion of interleukin-17 (IL-17), in disease pathogenesis. To elucidate its role in MS, brain tissues from patients with MS were compared to controls. We detected expression of IL-17 mRNA (by in situ hybridization) and protein (by immunohistochemistry) in perivascular lymphocytes as well as in astrocytes and oligodendrocytes located in the active areas of MS lesions. Further, we found a significant increase in the number of IL-17+ T cells in active rather than inactive areas of MS lesions. Specifically, double immunofluorescence showed that IL-17 immunoreactivity was detected in 79% of T cells in acute lesions, 73% in active areas of chronic active lesions, but in only 17% of those in inactive lesions and 7% in lymph node control tissue. CD8+, as well as CD4+, T cells were equally immunostained for IL-17 in MS tissues. Interestingly, and in contrast to lymph node T cells, no perivascular T cells showed FoxP3 expression, a marker of regulatory T cells, at any stage of MS lesions. These observations suggest an enrichment of both IL-17+CD4+ and CD8+ T cells in active MS lesions as well as an important role for IL-17 in MS pathogenesis, with some remarkable differences from the experimental autoimmune encephalomyelitis model.


Asunto(s)
Sistema Nervioso Central/metabolismo , Interleucina-17/metabolismo , Esclerosis Múltiple/inmunología , Neuroglía/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Encéfalo/patología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Estudios de Casos y Controles , Diferenciación Celular , Humanos , Ganglios Linfáticos/patología , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Neuroglía/metabolismo , Linfocitos T/metabolismo
15.
Nat Med ; 14(11): 1227-35, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18953350

RESUMEN

The major known genetic risk factors in multiple sclerosis reside in the major histocompatibility complex (MHC) region. Although there is strong evidence implicating MHC class II alleles and CD4(+) T cells in multiple sclerosis pathogenesis, possible contributions from MHC class I genes and CD8(+) T cells are controversial. We have generated humanized mice expressing the multiple sclerosis-associated MHC class I alleles HLA-A(*)0301 (encoding human leukocyte antigen-A3 (HLA-A3)) and HLA-A(*)0201 (encoding HLA-A2) and a myelin-specific autoreactive T cell receptor (TCR) derived from a CD8(+) T cell clone from an individual with multiple sclerosis to study mechanisms of disease susceptibility. We demonstrate roles for HLA-A3-restricted CD8(+) T cells in induction of multiple sclerosis-like disease and for CD4(+) T cells in its progression, and we also define a possible mechanism for HLA-A(*)0201-mediated protection. To our knowledge, these data provide the first direct evidence incriminating MHC class I genes and CD8(+) T cells in the pathogenesis of human multiple sclerosis and reveal a network of MHC interactions that shape the risk of multiple sclerosis.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Esclerosis Múltiple/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sistema Nervioso Central/inmunología , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ratones , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Timo/inmunología
16.
Nat Med ; 13(12): 1483-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17994101

RESUMEN

Multiple sclerosis is a neuroinflammatory disease associated with axonal degeneration. The neuronally expressed, proton-gated acid-sensing ion channel-1 (ASIC1) is permeable to Na+ and Ca2+, and excessive accumulation of these ions is associated with axonal degeneration. We tested the hypothesis that ASIC1 contributes to axonal degeneration in inflammatory lesions of the central nervous system (CNS). After induction of experimental autoimmune encephalomyelitis (EAE), Asic1-/- mice showed both a markedly reduced clinical deficit and reduced axonal degeneration compared to wild-type mice. Consistently with acidosis-mediated injury, pH measurements in the spinal cord of EAE mice showed tissue acidosis sufficient to open ASIC1. The acidosis-related protective effect of Asic1 disruption was also observed in nerve explants in vitro. Amiloride, a licensed and clinically safe blocker of ASICs, was equally neuroprotective in nerve explants and in EAE. Although ASICs are also expressed by immune cells, this expression is unlikely to explain the neuroprotective effect of Asic1 inactivation, as CNS inflammation was similar in wild-type and Asic1-/- mice. In addition, adoptive transfer of T cells from wild-type mice did not affect the protection mediated by Asic1 disruption. These results suggest that ASIC1 blockers could provide neuroprotection in multiple sclerosis.


Asunto(s)
Autoinmunidad , Axones/patología , Sistema Nervioso Central/patología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Amilorida/farmacología , Animales , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Degeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Canales de Sodio/metabolismo , Médula Espinal/patología
17.
Eur J Neurosci ; 22(1): 39-49, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16029194

RESUMEN

Contactin, a glycosyl-phosphatidylinositol (GPI)-anchored predominantly neuronal cell surface glycoprotein, associates with sodium channels Nav1.2, Nav1.3 and Nav1.9, and enhances the density of these channels on the plasma membrane in mammalian expression systems. However, a detailed functional analysis of these interactions and of untested putative interactions with other sodium channel isoforms in mammalian neuronal cells has not been carried out. We examined the expression and function of sodium channels in small-diameter dorsal root ganglion (DRG) neurons from contactin-deficient (CNTN-/-) mice, compared to CNTN+/+ litter mates. Nav1.9 is preferentially expressed in isolectin B4 (IB4)-positive neurons and thus we used this marker to subdivide small-diameter DRG neurons. Using whole-cell patch-clamp recording, we observed a greater than two-fold reduction of tetrodotoxin-resistant (TTX-R) Nav1.8 and Nav1.9 current densities in IB4+ DRG neurons cultured from CNTN-/- vs. CNTN+/+ mice. Current densities for TTX-sensitive (TTX-S) sodium channels were unaffected. Contactin's effect was selective for IB4+ neurons as current densities for both TTX-R and TTX-S channels were not significantly different in IB4- DRG neurons from the two genotypes. Consistent with these results, we have demonstrated a reduction in Nav1.8 and Nav1.9 immunostaining on peripherin-positive unmyelinated axons in sciatic nerves from CNTN-/- mice but detected no changes in the expression for the two major TTX-S channels Nav1.6 and Nav1.7. These data provide evidence of a role for contactin in selectively regulating the cell surface expression and current densities of TTX-R but not TTX-S Na+ channel isoforms in nociceptive DRG neurons; this regulation could modulate the membrane properties and excitability of these neurons.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/fisiología , Membrana Celular/metabolismo , Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Canales de Sodio/metabolismo , Animales , Axones/efectos de los fármacos , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas , Contactinas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ganglios Espinales/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.8 , Canal de Sodio Activado por Voltaje NAV1.9 , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuropéptidos/efectos de los fármacos , Neuropéptidos/metabolismo , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Técnicas de Placa-Clamp , Lectinas de Plantas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Tetrodotoxina/farmacología
18.
Glia ; 49(2): 220-9, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15390090

RESUMEN

Loss of axons is a major contributor to nonremitting deficits in the inflammatory demyelinating disease multiple sclerosis (MS). Based on biophysical studies showing that activity of axonal sodium channels can trigger axonal degeneration, recent studies have tested sodium channel-blocking drugs in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and have demonstrated a protective effect on axons. However, it is possible that, in addition to a direct effect on axons, sodium channel blockers may also interfere with inflammatory mechanisms. We therefore examined the novel hypothesis that sodium channels contribute to activation of microglia and macrophages in EAE and acute MS lesions. In this study, we demonstrate a robust increase of sodium channel Nav1.6 expression in activated microglia and macrophages in EAE and MS. We further demonstrate that treatment with the sodium channel blocker phenytoin ameliorates the inflammatory cell infiltrate in EAE by 75%. Supporting a role for sodium channels in microglial activation, we show that tetrodotoxin, a specific sodium channel blocker, reduces the phagocytic function of activated rat microglia by 40%. To further confirm a role of Nav1.6 in microglial activation, we examined the phagocytic capacity of microglia from med mice, which lack Nav1.6 channels, and show a 65% reduction in phagocytic capacity compared with microglia from wildtype mice. Our findings indicate that sodium channels are important for activation and phagocytosis of microglia and macrophages in EAE and MS and suggest that, in addition to a direct neuroprotective effect on axons, sodium channel blockade may ameliorate neuroinflammatory disorders via anti-inflammatory mechanisms.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Gliosis/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Gliosis/tratamiento farmacológico , Gliosis/fisiopatología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.6 , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/farmacología , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Fenitoína/farmacología , Fenitoína/uso terapéutico , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/genética , Tetrodotoxina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
19.
Ann Neurol ; 52(6): 786-92, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12447933

RESUMEN

Although pain is experienced by many patients with diabetic neuropathy, the pathophysiology of painful diabetic neuropathy is not understood. Substantial evidence indicates that dysregulated sodium channel gene transcription contributes to hyperexcitability of dorsal root ganglion neurons, which may produce neuropathic pain after axonal transection. In this study, we examined sodium channel mRNA and protein expression in dorsal root ganglion neurons in rats with streptozotocin-induced diabetes and tactile allodynia, using in situ hybridization and immunocytochemistry for sodium channels Na(v)1.1, Na(v)1.3, Na(v)1.6, Na(v)1.7, Na(v)1.8, and Na(v)1.9. Our results show that, in rats with experimental diabetes, there is a significant upregulation of mRNA for the Na(v)1.3, Na(v)1.6, and Na(v)1.9 sodium channels and a downregulation of Na(v)1.8 mRNA 1 and 8 weeks after onset of allodynia. Channel protein levels display parallel changes. Our results demonstrate dysregulated expression of the genes for sodium channels Na(v)1.3, Na(v)1.6, Na(v)1.8, and Na(v)1.9 in dorsal root ganglion neurons in experimental diabetes and suggest that misexpression of sodium channels contributes to neuropathic pain associated with diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Canales de Sodio/biosíntesis , Animales , Diabetes Mellitus Experimental/inducido químicamente , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley
20.
Brain ; 126(Pt 7): 1552-61, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12805113

RESUMEN

Myelinated fibres are characterized by the aggregation of Nav1.6 sodium channels within the axon membrane at nodes of Ranvier, where their presence supports saltatory conduction. In this study, we used immunocytochemical methods to study the organization of sodium channels along axons in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. We studied axons within the optic nerve, a CNS tract commonly affected in multiple sclerosis, and their cell bodies of origin (retinal ganglion cells), using subtype-specific antibodies generated against sodium channel subtypes Nav1.1, Nav1.2, Nav1.3 and Nav1.6, which previously have been shown to be expressed by retinal ganglion cells. We demonstrate a significant switch from Nav1.6 to Nav1.2 expression in the optic nerve in EAE; there was a reduction in frequency of Nav1.6-positive nodes (84.5% Nav1.6-immunopositive nodes in control versus 32.9% in EAE) and increased frequency of Nav1.2-positive nodes (11.8% Nav1.2 immunopositive nodes in control versus 74.9% in EAE). Moreover, we observed a significant increase in the number of linear (presumably demyelinated) axonal profiles demonstrating extended diffuse immunostaining for Nav1.2 in EAE versus control optic nerves. These changes within the optic nerve are paralleled by decreased levels of Nav1.6 and increased Nav1.2 protein, together with increased levels of Nav1.2 mRNA, within retinal ganglion cells in EAE. Our findings of a loss of Nav1.6 and increased expression of Nav1.2 suggest that electrogenesis in EAE may revert to a stage similar to that observed in immature retinal ganglion cells in which Nav1.2 channels support conduction of action potentials along axons.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Nervio Óptico/metabolismo , Canales de Sodio/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ratones , Esclerosis Múltiple/metabolismo , Nódulos de Ranvier/metabolismo , Células Ganglionares de la Retina/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA