Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34443806

RESUMEN

The detailed study of graphene oxide (GO) synthesis by changing the graphite/oxidizing reagents mass ratios (mG/mROxi), provided GO nanosheets production with good yield, structural quality, and process savings. Three initial samples containing different amounts of graphite (3.0 g, 4.5 g, and 6.0 g) were produced using a bench reactor under strictly controlled conditions to guarantee the process reproducibility. The produced samples were analyzed by Raman spectroscopy, atomic force microscopy (AFM), x-ray diffraction (XDR), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetry (TGA) techniques. The results showed that the major GO product comprised of nanosheets containing between 1-5 layers, with lateral size up to 1.8 µm. Therefore, it was possible to produce different batches of graphene oxide with desirable physicochemical characteristics, keeping the amount of oxidizing reagent unchanged. The use of different proportions (mG/mROxi) is an important strategy that provides to produce GO nanostructures with high structural quality and scale-up, which can be well adapted in medium-sized bench reactor.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545586

RESUMEN

In this paper, the thermal conductivity behavior of synthetic and natural esters reinforced with 2D nanostructures-single hexagonal boron nitride (h-BN), single molybdenum disulfide (MoS2), and hybrid h-BN/MOS2-were studied and compared to each other. As a basis for the synthesis of nanofluids, three biodegradable insulating lubricants were used: FR3TM and VG-100 were used as natural esters and MIDEL 7131 as a synthetic ester. Two-dimensional nanosheets of h-BN, MoS2, and their hybrid nanofillers (50/50 ratio percent) were incorporated into matrix lubricants without surfactants or additives. Nanofluids were prepared at 0.01, 0.05, 0.10, 0.15, and 0.25 weight percent of filler fraction. The experimental results revealed improvements in thermal conductivity in the range of 20-32% at 323 K with the addition of 2D nanostructures, and a synergistic behavior was observed for the hybrid h-BN/MoS2 nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA