Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 29(3): 1059-1074, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30084950

RESUMEN

The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/ßcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Ratones Noqueados , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Vía de Señalización Wnt
2.
Brain ; 137(Pt 3): 806-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24430976

RESUMEN

Lafora progressive myoclonus epilepsy (Lafora disease) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. The vast majority of patients carry mutations in either the EPM2A or EPM2B genes, encoding laforin, a glucan phosphatase, and malin, an E3 ubiquitin ligase, respectively. Although the precise physiological role of these proteins is not fully understood, work in past years has established a link between glycogen synthesis, Lafora bodies formation and Lafora disease development. To determine the role of the phosphatase activity of laforin in disease development we generated two Epm2a(-/-) mouse lines expressing either wild-type laforin or a mutant (C265S) laforin lacking only the phosphatase activity. Our results demonstrate that expression of either transgene blocks formation of Lafora bodies and restores the impairment in macroautophagy, preventing the development of Lafora bodies in Epm2a(-/-) mice. These data indicate that the critical pathogenic process is the control of abnormal glycogen accumulation through intracellular proteolytic systems by the laforin-malin complex, and not glycogen dephosphorylation by laforin. Understanding which is the essential process leading to Lafora disease pathogenesis represents a critical conceptual advance that should facilitate development of appropriate therapeutics.


Asunto(s)
Fosfatasas de Especificidad Dual/deficiencia , Fosfatasas de Especificidad Dual/metabolismo , Enfermedad de Lafora/metabolismo , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Femenino , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Fosforilación/genética , Proteínas Tirosina Fosfatasas no Receptoras
3.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463753

RESUMEN

Insulin-like growth factor-I (IGF-I) exerts multiple actions, yet the role of IGF-I from different sources is poorly understood. Here, we explored the functional and behavioral consequences of the conditional deletion of Igf-I in the nervous system (Igf-I Δ/Δ), and demonstrated that long-term potentiation was impaired in hippocampal slices. Moreover, Igf-I Δ/Δ mice showed spatial memory deficits in the Morris water maze, and the significant sex-dependent differences displayed by Igf-I Ctrl/Ctrl mice disappeared in Igf-I Δ/Δ mice in the open field and rota-rod tests. Brain Igf-I deletion disorganized the granule cell layer of the dentate gyrus (DG), and it modified the relative expressions of GAD and VGLUT1, which are preferentially localized to inhibitory and excitatory presynaptic terminals. Furthermore, Igf-I deletion altered protein modules involved in receptor trafficking, synaptic proteins, and proteins that functionally interact with estrogen and androgen metabolism. Our findings indicate that brain IGF-I is crucial for long-term potentiation, and that it is involved in the regulation of spatial memory and sexual dimorphic behaviors, possibly by maintaining the granule cell layer structure and the stability of synaptic-related protein modules.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Potenciación a Largo Plazo , Animales , Ratones , Encéfalo/metabolismo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Memoria Espacial
4.
Mol Neurobiol ; 59(9): 5750-5765, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781633

RESUMEN

Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.


Asunto(s)
Trastorno del Espectro Autista , Neocórtex , Animales , Trastorno del Espectro Autista/genética , Corteza Cerebral/metabolismo , Humanos , Ratones , Neocórtex/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
5.
Nat Neurosci ; 22(8): 1258-1268, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308530

RESUMEN

The deposition of aggregated amyloid-ß peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer's disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-ß formation. We tested whether downregulation of ADAM10 activity by its secreted endogenous inhibitor secreted-frizzled-related protein 1 (SFRP1) is a common trait of sporadic AD. We demonstrate that SFRP1 is significantly increased in the brain and cerebrospinal fluid of patients with AD, accumulates in APs and binds to amyloid-ß, hindering amyloid-ß protofibril formation. Sfrp1 overexpression in an AD-like mouse model anticipates the appearance of APs and dystrophic neurites, whereas its genetic inactivation or the infusion of α-SFRP1-neutralizing antibodies favors non-amyloidogenic APP processing. Decreased Sfrp1 function lowers AP accumulation, improves AD-related histopathological traits and prevents long-term potentiation loss and cognitive deficits. Our study unveils SFRP1 as a crucial player in AD pathogenesis and a promising AD therapeutic target.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína ADAM10/biosíntesis , Proteína ADAM10/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/biosíntesis , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Anticuerpos Bloqueadores/uso terapéutico , Química Encefálica/genética , Regulación hacia Abajo , Humanos , Potenciación a Largo Plazo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Transgénicos , Neuritas/patología , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/genética , Placa Amiloide/patología
6.
Neuropharmacology ; 54(1): 219-25, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17889909

RESUMEN

Recent studies suggest that blockade of cannabinoid CB1 receptors suppresses feeding, an effect observed in humans treated with the cannabinoid CB1 antagonist Rimonabant. A cross-talk between cannabinoids and other systems controlling appetite might exist since cannabinoid receptors are present in hypothalamic neural circuits involved in feeding regulation and energy expenditure. Orexin A-hypocretin 1, an orexigenic peptide, is an ideal candidate to interact with cannabinoid receptors. Both of them play an important role in feeding and they co-localize in similar brain regions. To study this hypothesis we investigated (a) the effects on food intake of either orexin A-hypocretin 1 or the cannabinoid CB1 receptor antagonist Rimonabant in pre-fed rats, and (b) the interaction between them by monitoring the effects of the combined administration of cannabinoids and orexin A-hypocretin 1 in pre-fed rats. The results show that (1) orexin A-hypocretin 1 is a short-term modulator of appetite that increases food intake in pre-fed rats, (2) Rimonabant decreases food intake and (3) such effective and subeffective doses of Rimonabant block the orexigenic effect of orexin A-hypocretin 1. The results support the idea that cannabinoid and orexin A-hypocretin 1 systems share a common mechanism in food intake and indicate that the hypothalamic orexigenic circuits are involved in cannabinoid CB1 receptor antagonism-mediated reduction of appetite.


Asunto(s)
Antagonistas de Receptores de Cannabinoides , Ingestión de Alimentos/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/administración & dosificación , Neuropéptidos/administración & dosificación , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Esquema de Medicación , Interacciones Farmacológicas , Masculino , Orexinas , Ratas , Ratas Wistar , Rimonabant , Factores de Tiempo
7.
PLoS One ; 8(4): e60918, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565287

RESUMEN

Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animals metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelins signal in the control of food intake under equilibrate energy balance conditions.


Asunto(s)
Ghrelina/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Wistar , Rimonabant , Triazoles/farmacología
8.
Nat Neurosci ; 14(5): 562-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21478884

RESUMEN

It is well established that retinal neurogenesis in mouse embryos requires the activation of Notch signaling, but is independent of the Wnt signaling pathway. We found that genetic inactivation of Sfrp1 and Sfrp2, two postulated Wnt antagonists, perturbs retinal neurogenesis. In retinas from Sfrp1(-/-); Sfrp2(-/-) embryos, Notch signaling was transiently upregulated because Sfrps bind ADAM10 metalloprotease and downregulate its activity, an important step in Notch activation. The proteolysis of other ADAM10 substrates, including APP, was consistently altered in Sfrp mutants, whereas pharmacological inhibition of ADAM10 partially rescued the Sfrp1(-/-); Sfrp2(-/-) retinal phenotype. Conversely, ectopic Sfrp1 expression in the Drosophila wing imaginal disc prevented the expression of Notch targets, and this was restored by the coexpression of Kuzbanian, the Drosophila ADAM10 homolog. Together, these data indicate that Sfrps inhibit the ADAM10 metalloprotease, which might have important implications in pathological events, including cancer and Alzheimer's disease.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Neurogénesis/fisiología , Retina/citología , Proteína ADAM10 , Factores de Edad , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Células CHO , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Drosophila , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Ojo/citología , Ojo/embriología , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Retina/embriología , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA