Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Mol Biol ; 92(4-5): 483-503, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27714490

RESUMEN

Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.


Asunto(s)
Pared Celular/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genómica , Prunus persica/genética , Prunus persica/metabolismo , Pared Celular/genética , Frío , Conservación de Alimentos , Frutas/citología , Frutas/crecimiento & desarrollo , Prunus persica/crecimiento & desarrollo
2.
J Sci Food Agric ; 96(3): 939-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25766750

RESUMEN

BACKGROUND: Ultra-violet B (UV-B) radiation has been shown to improve, at least in selected genotypes, both the health-promoting potential and the aesthetic properties of tomato and peach fruits during their post-harvest period. The effects of post-harvest UV-B treatment on the cell-wall metabolism of peaches and nectarines (Prunus persica L. Batsch) were assessed in this study. Three cultivars, Suncrest (melting flesh, MF) and Babygold 7 (non-melting flesh, NMF) peaches and Big Top (slow melting, SM) nectarine, differing in the characteristics of textural changes and softening during ripening, were analysed. RESULTS: The effects of UV-B differ in relation to the cultivar considered. In MF 'Suncrest' fruit, UV-B treatment significantly reduced the loss of flesh firmness despite the slight increase in the presence and activity of endo-polygalacturonase. The activity of exo-polygalacturonase increased as well, while endo-1,4-ß-D-glucanase/ß-D-glucosidase, ß-galactosidase and pectin methylesterase were substantially unaffected by the treatment. The UV-B-induced reduction of flesh softening was paralleled by the inhibition of PpExp gene transcription and expansin protein accumulation. The UV-B treatment did not induce differences in flesh firmness between control and UV-B-treated NMF 'Babygold 7' and SM 'Big Top' fruit. CONCLUSION: Based on these results, post-harvest UV-B treatment may be considered a promising tool to improve shelf-life and quality of peach fruit.


Asunto(s)
Calidad de los Alimentos , Frutas/efectos de la radiación , Rayos Ultravioleta , Pared Celular/efectos de la radiación , Humanos , Prunus persica/efectos de la radiación
3.
BMC Genomics ; 16: 245, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25887353

RESUMEN

BACKGROUND: Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. RESULTS: We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life. CONCLUSIONS: Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.


Asunto(s)
Frío , Prunus persica/genética , Prunus persica/metabolismo , Transcriptoma , Acetaldehído/metabolismo , Pared Celular/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo
4.
BMC Genomics ; 14: 750, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24182359

RESUMEN

BACKGROUND: Peach [Prunus persica (L.) Batsch] is an economically important fruit crop that has become a genetic-genomic model for all Prunus species in the family Rosaceae. A doubled haploid reference genome sequence length of 227.3 Mb, a narrow genetic base contrasted by a wide phenotypic variability, the generation of cultivars through hybridization with subsequent clonal propagation, and the current accessibility of many founder genotypes, as well as the pedigree of modern commercial cultivars make peach a model for the study of inter-cultivar genomic heterogeneity and its shaping by artificial selection. RESULTS: The quantitative genomic differences among the three genotypes studied as genomic variants, included small variants (SNPs and InDels) and structural variants (SV) (duplications, inversions and translocations). The heirloom cultivar 'Georgia Belle' and an almond by peach introgression breeding line 'F8,1-42' are more heterogeneous than is the modern cultivar 'Dr. Davis' when compared to the peach reference genome ('Lovell'). A pair-wise comparison of consensus genome sequences with 'Lovell' showed that 'F8,1-42' and 'Georgia Belle' were more divergent than were 'Dr. Davis' and 'Lovell'. CONCLUSIONS: A novel application of emerging bioinformatics tools to the analysis of ongoing genome sequencing project outputs has led to the identification of a range of genomic variants. Results can be used to delineate the genomic and phenotypic differences among peach genotypes. For crops such as fruit trees, the availability of old cultivars, breeding selections and their pedigrees, make them suitable models for the study of genome shaping by artificial selection. The findings from the study of such genomic variants can then elucidate the control of pomological traits and the characterization of metabolic pathways, thus facilitating the development of protocols for the improvement of Prunus crops.


Asunto(s)
Genoma de Planta , Prunus/genética , Eliminación de Gen , Variación Estructural del Genoma , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis Insercional , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
5.
Plant Mol Biol ; 81(1-2): 161-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23184287

RESUMEN

Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.


Asunto(s)
Prunus/genética , Mapeo Cromosómico , Frío , ADN de Plantas/genética , Frutas/genética , Frutas/fisiología , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos , Reacción de Maillard , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Polimorfismo de Nucleótido Simple , Prunus/fisiología , Sitios de Carácter Cuantitativo
6.
BMC Genomics ; 12: 569, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22108025

RESUMEN

BACKGROUND: The application of next generation sequencing technologies and bioinformatic scripts to identify high frequency SNPs distributed throughout the peach genome is described. Three peach genomes were sequenced using Roche 454 and Illumina/Solexa technologies to obtain long contigs for alignment to the draft 'Lovell' peach sequence as well as sufficient depth of coverage for 'in silico' SNP discovery. DESCRIPTION: The sequences were aligned to the 'Lovell' peach genome released April 01, 2010 by the International Peach Genome Initiative (IPGI). 'Dr. Davis', 'F8, 1-42' and 'Georgia Belle' were sequenced to add SNPs segregating in two breeding populations, Pop DF ('Dr. Davis' × 'F8, 1-42') and Pop DG ('Dr. Davis' × 'Georgia Belle'). Roche 454 sequencing produced 980,000 total reads with 236 Mb sequence for 'Dr. Davis' and 735,000 total reads with 172 Mb sequence for 'F8, 1-42'. 84 bp × 84 bp paired end Illumina/Solexa sequences yielded 25.5, 21.4, 25.5 million sequences for 'Dr. Davis', 'F8, 1-42' and 'Georgia Belle', respectively. BWA/SAMtools were used for alignment of raw reads and SNP detection, with custom PERL scripts for SNP filtering. Velvet's Columbus module was used for sequence assembly. Comparison of aligned and overlapping sequences from both Roche 454 and Illumina/Solexa resulted in the selection of 6654 high quality SNPs for 'Dr. Davis' vs. 'F8, 1-42' and 'Georgia Belle', distributed on eight major peach genome scaffolds as defined from the 'Lovell' assembly. CONCLUSION: The eight scaffolds contained about 215-225 Mb of peach genomic sequences with one SNP/~ 40,000 bases. All sequences from Roche 454 and Illumina/Solexa have been submitted to NCBI for public use in the Short Read Archive database. SNPs have been deposited in the NCBI SNP database.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Prunus/genética , Biología Computacional
7.
Genetica ; 139(6): 755-69, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21584650

RESUMEN

The recent sequencing of the complete genome of the peach offers new opportunities for further transcriptomic studies in Prunus species in the called post-genomics era. First works on transcriptome analysis in Prunus species started in the early 2000s with the development of ESTs (expressed sequence tags) and the analysis of several candidate genes. Later, new strategies of massive analysis (high throughput) of transcriptomes have been applied, producing larger amounts of data in terms of expression of a large number of genes in a single experiment. One of these systems is massive transcriptome analysis using cDNA biochips (microarrays) to analyze thousands of genes by hybridization of mRNA labelled with fluorescence. However, the recent emergence of a massive sequencing methodology ("deep-sequencing") of the transcriptome (RNA-Seq), based on lowering the costs of DNA (in this cases complementary, cDNA) sequencing, could be more suitable than the application of microarrays. Recent papers have described the tremendous power of this technology, both in terms of profiling coverage and quantitative accuracy in transcriptomic studies. Now this technology is being applied to plant species, including Prunus. In this work, we analyze the potential in using this RNA-Seq technology in the study of Prunus transcriptomes and the development of genomic tools. In addition, the strengths and limitations of RNA-Seq relative to microarray profiling have been discussed.


Asunto(s)
Perfilación de la Expresión Génica , Prunus/genética , Prunus/metabolismo , Etiquetas de Secuencia Expresada , Orden Génico , Genoma de Planta/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ARN
8.
Life (Basel) ; 10(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261033

RESUMEN

Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with 'Chandler' and 'Tulare' among the cultivars more widely grown. 'Chandler' produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. Comparison between the genotypes also revealed the common and specific protein repertoires, totaling 321 pellicle proteins with differential abundance at harvest stage. The proteomics data provides clues on antioxidant, secondary, and hormonal metabolism that could be involved in the loss of quality in the pellicles during processing for commercialization.

9.
BMC Genomics ; 10: 587, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19995417

RESUMEN

BACKGROUND: Prunus fruit development, growth, ripening, and senescence includes major biochemical and sensory changes in texture, color, and flavor. The genetic dissection of these complex processes has important applications in crop improvement, to facilitate maximizing and maintaining stone fruit quality from production and processing through to marketing and consumption. Here we present an integrated fruit quality gene map of Prunus containing 133 genes putatively involved in the determination of fruit texture, pigmentation, flavor, and chilling injury resistance. RESULTS: A genetic linkage map of 211 markers was constructed for an intraspecific peach (Prunus persica) progeny population, Pop-DG, derived from a canning peach cultivar 'Dr. Davis' and a fresh market cultivar 'Georgia Belle'. The Pop-DG map covered 818 cM of the peach genome and included three morphological markers, 11 ripening candidate genes, 13 cold-responsive genes, 21 novel EST-SSRs from the ChillPeach database, 58 previously reported SSRs, 40 RAFs, 23 SRAPs, 14 IMAs, and 28 accessory markers from candidate gene amplification. The Pop-DG map was co-linear with the Prunus reference T x E map, with 39 SSR markers in common to align the maps. A further 158 markers were bin-mapped to the reference map: 59 ripening candidate genes, 50 cold-responsive genes, and 50 novel EST-SSRs from ChillPeach, with deduced locations in Pop-DG via comparative mapping. Several candidate genes and EST-SSRs co-located with previously reported major trait loci and quantitative trait loci for chilling injury symptoms in Pop-DG. CONCLUSION: The candidate gene approach combined with bin-mapping and availability of a community-recognized reference genetic map provides an efficient means of locating genes of interest in a target genome. We highlight the co-localization of fruit quality candidate genes with previously reported fruit quality QTLs. The fruit quality gene map developed here is a valuable tool for dissecting the genetic architecture of fruit quality traits in Prunus crops.


Asunto(s)
Frutas/genética , Prunus/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Frutas/anatomía & histología , Frutas/fisiología , Ligamiento Genético , Marcadores Genéticos , Polimorfismo Genético , Prunus/anatomía & histología , Prunus/fisiología
10.
J Food Prot ; 72(5): 1037-46, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19517732

RESUMEN

To evaluate potential alternatives to conventional fungicides to control decay, more than 20 food additives and generally regarded as safe compounds were tested at three concentrations in in vivo primary screenings with several cultivars of California peaches, nectarines, and plums that had been artificially inoculated with seven major postharvest pathogens: Monilinia fructicola, Botrytis cinerea, Geotrichum candidum, Alternaria alternata, Penicillium expansum, Mucor piriformis, and Rhizopus stolonifer. Overall, the best compounds were 200 mM potassium sorbate (PS), 200 mM sodium benzoate (SB), 200 mM sodium sorbate, 100 mM 2-deoxy-D-glucose, 400 mM sodium carbonate, and 250 mM potassium carbonate. Sodium and ammonium molybdates, acid lactic, and hydrogen peroxide were somewhat effective but were phytotoxic to fruit skin tissues. However, the best compounds lacked effectiveness and persistence when tested against brown rot in small-scale trials of 60-s dips in aqueous solutions at ambient temperatures; PS and SB reduced brown rot incidence by less than 40%. Rinsing treated fruit with tap water reduced the efficacy of the compounds by up to 30%. In contrast, heating the solutions to 55 or 60 degrees C significantly increased treatment efficacy. Brown rot incidence and severity were reduced by 35 and 25%, respectively, on PS-treated peaches after 7 days of incubation at 20 degrees C. However, treatment efficacy was not superior to that with water alone at these temperatures. In semicommercial trials, mixtures of fludioxonil with PS, SB, or 2-deoxy-D-glucose applied as fruit coatings on a packing line were not synergistic in their effect on brown rot, gray mold, and sour rot.


Asunto(s)
Desinfectantes/farmacología , Aditivos Alimentarios/farmacología , Conservación de Alimentos/métodos , Frutas/microbiología , Hongos/efectos de los fármacos , Citrus/microbiología , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Sinergismo Farmacológico , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Hongos/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Compuestos Orgánicos/farmacología , Prunus/microbiología , Temperatura , Factores de Tiempo
11.
Front Plant Sci ; 9: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515596

RESUMEN

It has recently been described that the Japanese plum "Santa Rosa" bud sport series contains variations in ripening pattern: climacteric, suppressed-climacteric and non-climacteric types. This provides an interesting model to study the role of ethylene and other key mechanisms governing fruit ripening, softening and senescence. The aim of the current study was to investigate such differences at the genomic level, using this series of plum bud sports, with special reference to genes involved in ethylene biosynthesis, signal transduction, and sugar metabolism. Genomic DNA, isolated from leaf samples of six Japanese plum cultivars ("Santa Rosa", "July Santa Rosa", "Late Santa Rosa", "Sweet Miriam", "Roysum", and "Casselman"), was used to construct paired-end standard Illumina libraries. Sequences were aligned to the Prunus persica genome, and genomic variations (SNPs, INDELS, and CNV's) were investigated. Results determined 12 potential candidate genes with significant copy number variation (CNV), being associated with ethylene perception and signal transduction components. Additionally, the Maximum Likelihood (ML) phylogenetic tree showed two sorbitol dehydrogenase genes grouping into a distinct clade, indicating that this natural group is well-defined and presents high sequence identity among its members. In contrast, the ethylene group, which includes ACO1, ACS1, ACS4, ACS5, CTR1, ERF1, ERF3, and ethylene-receptor genes, was widely distributed and clustered into 10 different groups. Thus, ACS, ERF, and sorbitol dehydrogenase proteins potentially share a common ancestor for different plant genomes, while the expansion rate may be related to ancestral expansion rather than species-specific events. Based on the distribution of the clades, we suggest that gene function diversification for the ripening pathway occurred prior to family extension. We herein report all the frameshift mutations in genes involved in sugar transport and ethylene biosynthesis detected as well as the gene CNV implicated in ripening differences.

12.
J Agric Food Chem ; 55(17): 7015-20, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17663566

RESUMEN

The effect of postharvest dips in a 1-methylcyclopropene-generating solution of the formulation AFxRD-038 (Rohm & Haas) on plum fruit (Prunus salicina Lindell cv. 'Harrow Sun') quality and ripening during storage was determined. Fruit weight loss, tissue firmness, soluble solids content (SSC), titratable acidity (TA), ethylene production, respiration, and the activities of the cell wall modifying enzymes polygalacturonase (PG), 1,4-beta-D-glucanase/glucosidase (EGase), beta-galactosidase (beta-gal), and pectin methylesterase (PME) were measured. Fruit reddening, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity were also analyzed. The 1-MCP-treated fruit showed reduced ethylene production and respiration rate and delayed softening, which was associated with the reduction in the activity of PG, EGase, and beta-gal. The immersion in 1-MCP-generating solutions also decreased weight and acidity loss without modifying the fruit SSC. The immersion treatment was particularly effective in the fruit stored at 5 degrees C, keeping higher overall quality, maintaining lower levels of anthocyanins and PAL activity, and preventing flesh reddening. The present data show that beneficial effects in delaying plum fruit ripening and controlling chilling injury can be obtained by dipping the fruits in a solution of this novel 1-MCP-generating formulation.


Asunto(s)
Frío , Ciclopropanos/administración & dosificación , Ciclopropanos/química , Conservación de Alimentos/métodos , Frutas , Prunus , Pared Celular/enzimología , Etilenos/biosíntesis , Frutas/química , Frutas/metabolismo , Frutas/ultraestructura , Soluciones
13.
Sci Rep ; 7: 42686, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28202904

RESUMEN

Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop.


Asunto(s)
Metilación de ADN , Flores/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Prunus dulcis/genética , Teorema de Bayes , Hojas de la Planta/genética , Polimorfismo de Longitud del Fragmento de Restricción
14.
Front Plant Sci ; 6: 316, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029222

RESUMEN

Japanese plums are classified as climacteric; however, some economically important cultivars selected in California produce very little ethylene and require long ripening both "on" and "off" the tree to reach eating-ripe firmness. To unravel the ripening behavior of different Japanese plum cultivars, ripening was examined in the absence (air) or in the presence of ethylene or propylene (an ethylene analog) following a treatment or not with 1-methylcyclopropene (1-MCP, an ethylene action inhibitor). Detailed physiological studies revealed for the first time three distinct ripening types in plum fruit: climacteric, suppressed-climacteric, and non-climacteric. Responding to exogenous ethylene or propylene, the slow-softening supressed-climacteric cultivars produced detectable amounts of ethylene, in contrast to the novel non-climacteric cultivar that produced no ethylene and softened extremely slowly. Genetic analysis using microsatellite markers produced identical DNA profiles for the climacteric cultivars "Santa Rosa" and "July Santa Rosa," the suppressed-climacteric cultivars "Late Santa Rosa," "Casselman," and "Roysum" and the novel non-climacteric "Sweet Miriam," as expected since historic records present most of these cultivars as bud-sport mutations derived initially from "Santa Rosa." This present study provides a novel fruit system to address the molecular basis of ripening and to develop markers that assist breeders in providing high-quality stone fruit cultivars that can remain "on-tree," increasing fruit flavor, saving harvesting costs, and potentially reducing the need for low-temperature storage during postharvest handling.

15.
J Food Sci ; 80(9): S2055-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26257310

RESUMEN

To determine the ideal ripening stage for consumption of the mango cultivars, "Ataulfo," "Haden," and "Tommy Atkins"; fruits at 3 flesh firmness levels (ripeness stages) were evaluated by a trained panel using descriptive analysis after instrumental measurements were made. After harvest, all fruits were ripened to allow softening and quality and sensory attribute changes. Ripening changes during softening of Ataulfo mangos were expressed by a characteristic increase in the perception of "tropical fruit" and "peach" aromas, an increase in "juiciness," "sweetness," and "tropical fruit" flavor, while "fibrousness," "chewiness," and "sourness" decreased. Similar desirable sensory changes were also detected during softening of Haden mangos; an increase in tropical fruit and peach aromas, sweetness and tropical fruit flavor, and a decrease in chewiness, sourness, and bitterness. Softening of Tommy Atkins mangos was followed by reduced chewiness and sourness and increased peach aroma. Softening of all cultivars was followed by decreased sourness and titratable acidity (TA) and increased soluble solids concentration (SSC) and SSC:TA ratio. The results indicate that mango ripening leads to increased expression of sensory attributes such as tropical fruit and peach aromas, tropical flavor, and sweetness that have been related to improved eating quality and these final changes in sensory quality attributes are specific for each cultivar. For example, Ataulfo and Haden mangos had greater improvement in quality and sensory attributes related to fruit eating quality during ripening-softening than Tommy Atkins. In our consumer test, these quality-sensory attributes expressed during ripening that were perceived by the trained panel were also validated, supporting the need for a controlled ripening protocol in mangos.


Asunto(s)
Frutas , Mangifera , Odorantes , Gusto , Comportamiento del Consumidor , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/normas , Dureza , Humanos , Masculino , Mangifera/clasificación , Especificidad de la Especie
16.
Plant Dis ; 85(6): 632-638, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30823031

RESUMEN

The effects of gaseous ozone exposure on in vitro growth of Penicillium digitatum and Penicillium italicum and development of postharvest green and blue molds on artificially inoculated citrus fruit were evaluated. Valencia oranges were continuously exposed to 0.3 ± 0.05 ppm(vol/vol) ozone at 5°C for 4 weeks. Eureka lemons were exposed to an intermittent day-night ozone cycle (0.3 ± 0.01 ppm ozone only at night) in a commercial cold storage room at 4.5°C for 9 weeks. Both oranges and lemons were continuously exposed to 1.0 ± 0.05 ppm ozone at 10°C in an export container for 2 weeks. Exposure to ozone did not reduce final incidence of green or blue mold, although incidence of both diseases was delayed about 1 week and infections developed more slowly under ozone. Sporulation was prevented or reduced by gaseous ozone without noticeable ozone phytotoxicity to the fruit. A synergistic effect between ozone exposure and low temperature was observed for prevention of sporulation. The proliferation of spores of fungicide-resistant strains of these pathogens, which often develop during storage, may be delayed, presumably prolonging the useful life of postharvest fungicides. In vitro radial growth of P. italicum, but not of P. digitatum, during a 5-day incubation period at 20°C was significantly reduced by a previous 0.3 ± 0.05 ppm ozone exposure at 5°C for 4 days. Inoculum density did not influence the effect of gaseous ozone on decay incidence or severity on oranges exposed to 0.3 ± 0.05 ppm ozone at 20°C for 1 week. Susceptibility of oranges to decay was not affected by a previous continuous exposure to 0.3 ± 0.05 ppm ozone at 20°C for 1 week. A corona discharge ozone generator was effective in abating ethylene in an empty export container.

17.
PLoS One ; 9(3): e90706, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598973

RESUMEN

Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.


Asunto(s)
Segregación Cromosómica/genética , Frío , Frutas/genética , Frutas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prunus/genética , Frutas/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología , Prunus/efectos de los fármacos , Prunus/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulón/genética , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Sci ; 229: 76-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25443835

RESUMEN

Ozone treatments are used to preserve quality during cold storage of commercially important fruits due to its ethylene oxidizing capacity and its antimicrobial attributes. To address whether or not ozone also modulates ripening by directly affecting fruit physiology, kiwifruit (Actinidia deliciosa cv. 'Hayward') were stored in very low ethylene atmosphere at 0°C (95% RH) in air (control) or in the presence of ozone (0.3µLL(-1)) for 2 or 4 months and subsequently ripened at 20°C (90% RH) for up to 8d. Ozone-treated kiwifruit showed a significant delay of ripening during maintenance at 20°C, accompanied by a marked decrease in ethylene biosynthesis due to inhibited AdACS1 and AdACO1 expression and reduced ACC synthase (ACS) and ACC oxidase (ACO) enzyme activity. Furthermore, ozone-treated fruit exhibited a marked reduction in flesh softening and cell wall disassembly. This effect was associated with reduced cell wall swelling and pectin and neutral sugar solubilization and was correlated with the inhibition of cell wall degrading enzymes activity, such as polygalacturonase (PG) and endo-1,4-ß-glucanase/1,4-ß-glucosidase (EGase/glu). Conclusively, the present study indicated that ozone may exert major residual effects in fruit ripening physiology and suggested that ethylene biosynthesis and cell walls turnover are specifically targeted by ozone.


Asunto(s)
Actinidia/citología , Actinidia/crecimiento & desarrollo , Pared Celular/metabolismo , Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Ozono/farmacología , Actinidia/efectos de los fármacos , Actinidia/genética , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Carbohidratos/análisis , Respiración de la Célula/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/enzimología , Frutas/efectos de los fármacos , Frutas/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Liasas/antagonistas & inhibidores , Liasas/genética , Liasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solubilidad
19.
Food Chem ; 163: 51-60, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24912695

RESUMEN

In the present study the possibility of enhancing phenolic compound contents in peaches and nectarines by post-harvest irradiation with UV-B was assessed. Fruits of 'Suncrest' and 'Babygold 7' peach and 'Big Top' nectarine cultivars were irradiated with UV-B for 12 h, 24 h and 36 h. Control fruits underwent the same conditions but UV-B lamps were screened by benzophenone-treated polyethylene film. The effectiveness of the UV-B treatment in modulating the concentration of phenolic compounds and the expression of the phenylpropanoid biosynthetic genes, was genotype-dependent. 'Big Top' and 'Suncrest' fruits were affected by increasing health-promoting phenolics whereas in 'Babygold 7' phenolics decreased after UV-B irradiation. A corresponding trend was exhibited by most of tested phenylpropanoid biosynthesis genes. Based on these results UV-B irradiation can be considered a promising technique to increase the health-promoting potential of peach fruits and indirectly to ameliorate the aesthetic value due to the higher anthocyanin content.


Asunto(s)
Fenoles/análisis , Prunus/efectos de la radiación , Flavonoides/análisis , Frutas/metabolismo , Frutas/efectos de la radiación , Expresión Génica/efectos de la radiación , Fenoles/metabolismo , Proantocianidinas/análisis , Prunus/química , Prunus/metabolismo , Rayos Ultravioleta
20.
3 Biotech ; 3(6): 481-490, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28324420

RESUMEN

Peach and nectarine (Prunus persica L.) are highly perishable; they ripen and deteriorate quickly at ambient temperature. Storage at low temperature (0-5 °C) is a common strategy used to slow the ripening processes and to extend shelf life. However, if susceptible varieties are held too long at a low temperature, they will not ripen properly and will develop chilling injury (CI) symptoms like mealiness (M), flesh browning (FB), and flesh bleeding (FBL). Understanding the genetic control of these traits to produce CI resistant cultivars will greatly benefit producers, shippers and consumers. In this study, we evaluated a population of 51 individuals from Pop-DG across 4 years with CI traits observed in one or two time points to detect molecular marker association with selected 960 single-nucleotide polymorphisms (SNPs) from 1,536 SNPs chip. Genotypic and phenotypic data were analyzed by general linear model and mixed linear model to see comparative results from both analyses. Among 960 SNPs used, 22 SNPs were found associated with CI susceptibility traits like M, FB, and FBL. Many SNP markers were located in or close to previously reported quantitative trait loci mapped by linkage analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA