Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 27(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35566275

RESUMEN

New composite photocatalysts have been obtained by chemical bath deposition of CdS on top of either nanostructured crystalline ZrO2 or TiO2 films previously deposited on conductive glass FTO. Their morphological, photoelectrochemical and photochemical properties have been investigated and compared. Time resolved spectroscopic, techniques show that in FTO/TiO2/CdS films the radiative recombination of charges, separated by visible illumination of CdS, is faster than in FTO/ZrO2/CdS, evidencing that carrier dynamics in the two systems is different. Photoelectrochemical investigation evidence a suppression of electron collection in ZrO2/CdS network, whereas electron injection from CdS to TiO2 is very efficient since trap states of TiO2 act as a reservoir for long lived electrons storage. This ability of FTO/TiO2/CdS films is used in the reductive cleavage of N=N bonds of some azo-dyes by visible light irradiation, with formation and accumulation of reduced aminic intermediates, identified by ESI-MS analysis. Needed protons are provided by sodium formate, a good hole scavenger that leaves no residue upon oxidation. FTO/TiO2/CdS has an approximately 100 meV driving force larger than FTO/ZrO2/CdS under illumination for azo-dye reduction and it is always about 10% more active than the seconds. The films showed very high stability and recyclability, ease of handling and recovering.


Asunto(s)
Compuestos Azo , Titanio , Catálisis , Colorantes , Luz , Titanio/química
2.
Photochem Photobiol Sci ; 20(10): 1243-1255, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34570354

RESUMEN

Dye-sensitized photoelectrochemical cells represent an appealing solution for artificial photosynthesis, aimed at the conversion of solar light into fuels or commodity chemicals. Extensive efforts have been directed towards the development of photoelectrodes combining semiconductor materials and organic dyes; the use of molecular components allows to tune the absorption and redox properties of the material. Recently, we have reported the use of a class of pentacyclic quinoid organic dyes (KuQuinone) chemisorbed onto semiconducting tin oxide as photoanodes for water oxidation. In this work, we investigate the effect of the SnO2 semiconductor thickness and morphology and of the dye-anchoring group on the photoelectrochemical performance of the electrodes. The optimized materials are mesoporous SnO2 layers with 2.5 µm film thickness combined with a KuQuinone dye with a 3-carboxylpropyl-anchoring chain: these electrodes achieve light-harvesting efficiency of 93% at the maximum absorption wavelength of 533 nm, and photocurrent density J up to 350 µA/cm2 in the photoelectrochemical oxidation of ascorbate, although with a limited incident photon-to-current efficiency of 0.075%. Calculations based on the density functional theory (DFT) support the role of the reduced species of the KuQuinone dye via a proton-coupled electron transfer as the competent species involved in the electron transfer to the tin oxide semiconductor. Finally, a preliminary investigation of the photoelectrodes towards benzyl alcohol oxidation is presented, achieving photocurrent density up to 90 µA/cm2 in acetonitrile in the presence of N-hydroxysuccinimide and pyridine as redox mediator and base, respectively. These results support the possibility of using molecular-based materials in synthetic photoelectrochemistry.

3.
Photochem Photobiol Sci ; 18(9): 2150-2163, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931455

RESUMEN

WO3/BiVO4 films obtained by electrochemical deposition of BiVO4 over mesoporous WO3 were applied to the photoelectrochemical degradation of selected emerging contaminants (ketoprofen and levofloxacine) in aqueous solutions. The WO3/BiVO4 films in this work are characterized by a mesoporous morphology with a maximum photoconversion efficiency >40% extending beyond 500 nm in Na2SO4 electrolytes. Oxygen was found to be the dominant water oxidation product (ca. 90% faradaic yield) and no evidence for the photogeneration of OH radicals was obtained. Nevertheless, both 10 ppm levofloxacine and ketoprofen could be degraded at WO3/BiVO4 junctions upon a few hours of illumination under visible light. However, while levofloxacine degradation intermediates were progressively consumed by further oxidation at the WO3/BiVO4 interface, ketoprofen oxidation byproducts, being stable aromatic species, were found to be persistent in aqueous solution even after 15 hours of solar simulated illumination. This indicates that, due to the lower oxidizing power of photogenerated holes in BiVO4 and a different water oxidation mechanism, the employment of WO3/BiVO4 in photoelectrochemical environmental remediation processes is much less universal than that possible with wider band gap semiconductors such as TiO2 and WO3.

4.
J Am Chem Soc ; 137(14): 4630-3, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25837588

RESUMEN

[(N,N'-Bis(2-(trimethylammonium)ethylene) perylene 3,4,9,10-tetracarboxylic acid bisimide)(PF6)2] (1) was observed to spontaneously adsorb on nanocrystalline WO3 surfaces via aggregation/hydrophobic forces. Under visible irradiation (λ > 435 nm), the excited state of 1 underwent oxidative quenching by electron injection (kinj > 10(8) s(-1)) to WO3, leaving a strongly positive hole (Eox ≈ 1.7 V vs SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells (PECs). The casting of IrO2 nanoparticles (NPs), acting as water oxidation catalysts (WOCs) on the sensitized electrodes, led to a 4-fold enhancement in photoanodic current, consistent with hole transfer from oxidized dye to IrO2 occurring on the microsecond time scale. Once the interaction of the sensitizer with suitable WOCs is optimized, 1/WO3 photoanodes may hold potentialities for the straightforward building of molecular level devices for solar fuel production.


Asunto(s)
Imidas/química , Nanopartículas/química , Óxidos/química , Perileno/análogos & derivados , Procesos Fotoquímicos , Luz Solar , Tungsteno/química , Agua/química , Transporte de Electrón , Modelos Moleculares , Conformación Molecular , Perileno/química
5.
Chemphyschem ; 15(6): 1164-74, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24643917

RESUMEN

Hematite photoelectrodes prepared via a hydrothermal route are functionalized with a water oxidation catalyst consisting of amorphous Fe(III) oxide, obtained by successive ionic layer adsorption and reaction. The performances of the catalyst-modified photoanodes are considerably higher than those of the parent electrodes, resulting in a nearly doubled photoanodic current in all the basic aqueous electrolytes explored in this study. The combination of electrochemical impedance spectroscopy and laser flash photolysis indicates that the presence of the catalyst results in enhanced hole trapping in surface reactive states exposed to the electrolyte, allowing for a more successful competition between charge transfer and recombination.

6.
Chem Soc Rev ; 42(6): 2228-46, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23223715

RESUMEN

Some recent studies mainly addressing the preparation and the modification of nanostructured thin films based on WO(3) and their application to photoelectrolysis of aqueous electrolytes are reviewed with the aim of rationalizing the main factors at the basis of an efficient photoanodic response. WO(3) represents one of the few materials which can achieve efficient water photo-oxidation under visible illumination, stably operating under strongly oxidizing conditions; thus the discussion of the structure-related photoelectrochemical properties of WO(3) thin films and their optimization for achieving almost quantitative photon to electron conversion constitutes the core of this contribution.

7.
Nanomaterials (Basel) ; 14(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786816

RESUMEN

Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes.

8.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747220

RESUMEN

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

9.
Phys Chem Chem Phys ; 15(31): 13083-92, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23820552

RESUMEN

Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanodes capable of efficiently splitting water, with photocurrent densities up to 6 ± 1 mA cm(-2) at 0 V vs. the reversible hydrogen electrode (RHE) under AM 1.5 G simulated sunlight illumination. The resulting Solar To Hydrogen (STH) conversion efficiencies, measured in two electrodes configuration, were in the range 3.7-5%, depending on the counter electrode that was employed. Investigations on the stability showed that these photoanodes were able to sustain 120 minutes of continuous illumination with a < 10% photocurrent loss at 0 V vs. RHE. Pristine photoanodic response of the cells could be fully restored by an additional SILAR cycle, evidencing that the observed loss is due to the detachment of the more weakly surface bound catalyst.


Asunto(s)
Suministros de Energía Eléctrica , Oxígeno/química , Energía Solar , Agua/química , Catálisis , Oxidación-Reducción
10.
Chemphyschem ; 13(12): 3025-34, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22532437

RESUMEN

Anodically grown WO(3) photoelectrodes prepared in an N-methylformamide (NMF) electrolyte have been investigated with the aim of exploring the effects induced by anodization time and water concentration in the electrochemical bath on the properties of the resulting photoanodes. An n-type WO(3) semiconductor is one of the most promising photoanodes for hydrogen production from water splitting and the electrochemical anodization of tungsten allows very good photoelectrodes, which are characterized by a low charge-transfer resistance and an increased spectral response in the visible region, to be obtained. These photoanodes were investigated by a combination of steady state and transient photoelectrochemical techniques and a correlation between photocurrent produced, morphology, and charge transport has been evaluated.

11.
ACS Omega ; 7(33): 29181-29194, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033653

RESUMEN

PEDOT-based counter electrodes for dye-sensitized solar cells (DSSCs) are generally prepared by electrodeposition, which produces polymer films endowed with the best electrocatalytic properties. This translates in fast regeneration of the redox mediator, which allows the solar cell to sustain efficient photoconversion. The sustainable fabrication of DSSCs must consider the scaling up of the entire process, and when possible, it should avoid the use of large amounts of hazardous and/or inflammable chemicals, such as organic solvents for instance. This is why electrodeposition of PEDOT-based counter electrodes should preferably be carried out in aqueous media. In this study, PEDOT/Nafion was electrodeposited on FTO and comparatively evaluated as a catalytic material in DSSCs based on either cobalt or copper electrolytes. Our results show that the electrochemical response of PEDOT/Nafion toward Co(II/III-) or Cu(I/II)-based redox shuttles was comparable to that of PEDOT/ClO4 and significantly superior to that of PEDOT/PSS. In addition, when tested for adhesion, PEDOT/Nafion films were more stable for delamination if compared to PEDOT/ClO4, a feature that may prove beneficial in view of the long-term stability of solar devices.

12.
J Chem Theory Comput ; 18(6): 3718-3736, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35377648

RESUMEN

In this contribution we present a mixed quantum-classical dynamical approach for the computation of vibronic absorption spectra of molecular aggregates and their nonadiabatic dynamics, taking into account the coupling between local excitations (LE) and charge-transfer (CT) states. The approach is based on an adiabatic (Ad) separation between the soft degrees of freedom (DoFs) of the system and the stiff vibrations, which are described by the quantum dynamics (QD) of wave packets (WPs) moving on the coupled potential energy surfaces (PESs) of the LE and CT states. These PESs are described with a linear vibronic coupling (LVC) Hamiltonian, parameterized by an overlap-based diabatization on the grounds of time-dependent density functional theory computations. The WPs time evolution is computed with the multiconfiguration time-dependent Hartree method, using effective modes defined through a hierarchical representation of the LVC Hamiltonian. The soft DoFs are sampled with classical molecular dynamics (MD), and the coupling between the slow and fast DoFs is included by recomputing the key parameters of the LVC Hamiltonians, specifically for each MD configuration. This method, named Ad-MD|gLVC, is applied to a perylene diimide (PDI) dimer in acetonitrile and water solutions, and it is shown to accurately reproduce the change in the vibronic features of the absorption spectrum upon aggregation. Moreover, the microscopic insight offered by the MD trajectories allows for a detailed understanding of the role played by the fluctuation of the aggregate structure on the shape of the vibronic spectrum and on the population of LE and CT states. The nonadiabatic QD predicts an extremely fast (∼50 fs) energy transfer between the two LEs. CT states have only a moderate effect on the absorption spectrum, despite the fact that after photoexcitation they are shown to acquire a fast and non-negligible population, highlighting their relevance in dictating the charge separation and transport in PDI-based optical devices.

13.
Top Curr Chem ; 303: 39-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21547685

RESUMEN

Recent advances in the field of photoelectrochemical cells (PECs) applied to solar water and H2S splitting and hydrogen production are reviewed with meaningful examples and case studies. At the molecular level, significant recent efforts have been directed towards the development of stable dye sensitizers/water oxidation catalyst assemblies. In the field of photoactive nanostructured materials and interfaces, novel highly ordered semiconductors nanostructures (i.e., anodically grown titania nanotubes) are drawing an increasing interest, under both the fundamental and applicative points of view, due to improved charge transfer kinetics with respect to more conventional sintered nanoparticle substrates. These features, coupled with low cost and ease of fabrication, stand as a good promise for the realization of solar devices capable of solar hydrogen production at a useful rate.

14.
Langmuir ; 27(11): 7276-84, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21542603

RESUMEN

The potentiostatic anodization of metallic tungsten has been investigated in different solvent/electrolyte compositions with the aim of improving the water oxidation ability of the tungsten oxide layer. In the NMF/H(2)O/NH(4)F solvent mixture, the anodization leads to highly efficient WO(3) photoanodes, which, combining spectral sensitivity, an electrochemically active surface, and improved charge-transfer kinetics, outperform, under simulated solar illumination, most of the reported nanocrystalline substrates produced by anodization in aqueous electrolytes and by sol-gel methods. The use of such electrodes results in high water electrolysis yields of between 70 and 90% in 1 M H(2)SO(4) under a potential bias of 1 V versus SCE and close to 100% in the presence of methanol.

15.
Dalton Trans ; 50(2): 696-704, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33346259

RESUMEN

The design of active photocathodes for the hydrogen evolution reaction (HER) is a crucial step in the development of dye-sensitized photoelectrochemical cells (DS-PECs) aimed at solar-assisted water splitting. In the present work, we report on the use of orange CdTexS1-x quantum dots (QDs) with an average diameter of ca. 3.5 nm, featuring different capping agents (MAA, MPA, and MSA) for the sensitization of electrodes based on nanostructured NiO. Photoelectrochemical characterization of the resulting NiO|QDs electrodes in the presence of [CoIII(NH3)5Cl]Cl2 as an irreversible electron acceptor elects MAA-capped QDs as the most active sample to achieve substantial photocurrent densities thanks to both improved surface coverage and injection ability. Functionalization of the NiO|QDs electrodes with either heterogeneous Pt or the molecular nickel bis(diphosphine) complex (1) as the hydrogen evolving catalysts (HECs) yields active photocathodes capable of promoting hydrogen evolution upon photoirradiation (maximum photocurrent densities of -16(±2) and -20(±1) µA·cm-2 for Pt and 1 HECs, respectively, at 0 V vs. NHE, 70-80% faradaic efficiency, maximum IPCE of ca. 0.2%). The photoelectrochemical activity is limited by the small surface concentration of the QD sensitizers on the NiO surface and the competitive light absorption by the NiO material which suggests that the match between dye adsorption and the available surface area is critical to achieving efficient hydrogen evolution by thiol-capped QDs.

16.
Inorg Chem ; 49(7): 3320-8, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20210301

RESUMEN

The use of TiO(2) photoanodes sensitized with ruthenium(II) polypyridine complexes bearing phosphonic acid anchoring groups has been investigated in the context of photoinduced hydrogen generation. The photoanodes sustained 240 h of irradiation without undergoing appreciable hydrolysis and decomposition in an aqueous environment at pH 3. While the use of organic sacrificial donors, like ascorbic acid, considerably enhanced the photoanodic response, the exploitation of iodide was more problematic because the adsorption of photogenerated I(3)(-) from aqueous media favored charge recombination with conduction band electrons, thus limiting the efficiency of the photoelectrosynthetic device. However, experiments performed in a three-compartment cell, where the photolectrode was in contact with an organic solvent, showed a remarkable photocurrent, with an electrolysis yield close to 87%.

17.
Nanomaterials (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126556

RESUMEN

UV-photoexcitation of TiO2 in contact with aqueous solutions of azo dyes does not imply only its photocatalytic degradation, but the reaction fate of the dye depends on the experimental conditions. In fact, we demonstrate that the presence of sodium formate is the switch from a degradative pathway of the dye to its transformation into useful products. Laser flash photolysis experiments show that charge separation is extremely long lived in nanostructured TiO2 thin films, making them suitable to drive both oxidation and reduction reactions. ESR spin trapping and photoluminescence experiments demonstrate that formate anions are very efficient in intercepting holes, thereby inhibiting OH radicals formation. Under these conditions, electrons promoted in the conduction band of TiO2 and protons deriving from the oxidation of formate on photogenerated holes lead to the reductive cleavage of N=N bonds with formation and accumulation of reduced intermediates. Negative ion ESI-MS findings provide clear support to point out this new mechanism. This study provides a facile solution for realizing together wastewater purification and photocatalytic conversion of a waste (discharged dye) into useful products (such as sulfanilic acid used again for synthesis of new azo dyes). Moreover, the use of TiO2 deposited on an FTO (Fluorine Tin Oxide) glass circumvents all the difficulties related to the use of slurries. The obtained photocatalyst is easy to handle and to recover and shows an excellent stability allowing complete recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA