Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(21): 211802, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295094

RESUMEN

Coherent elastic neutrino-nucleus scattering and low-mass dark matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO_{4} cryogenic detector from the NUCLEUS experiment exposed to a ^{252}Cf source placed in a compact moderator. We identify the expected peak structure from the single-γ de-excitation of ^{183}W with 3σ and its origin by neutron capture with 6σ significance. This result demonstrates a new method for precise, in situ, and nonintrusive calibration of low-threshold experiments.


Asunto(s)
Núcleo Celular , Neutrones , Californio , Método de Montecarlo
2.
J Phys Condens Matter ; 36(33)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722341

RESUMEN

Two-Temperature molecular dynamics (2T-MD) is a common approach for describing how electrons contribute to the evolution of a damage cascade by addressing their role in the redistribution of energy in the system. However, inaccuracies in 2T-MD's treatment of the high-energy particles have limited its utilisation. Here, we propose a reformulation of the traditional 2T-MD scheme to overcome this limitation by addressing the spurious double-interaction of high-energy atoms with electrons. We conduct a series of radiation damage cascades for 30, 50, and 100 keV primary knock-on atoms in increasingly large cubic W cells. In the simulations, we employ our modified 2T-MD scheme along with other treatments of electron-phonon coupling to explore their impact on the cascade evolution and the number of remnant defects. The results suggest that with the proposed modification, 2T-MD simulations account for the temperature time evolution during the ballistic phase and remove arbitrary choices, thus providing a better description of the underlying physics of the damage process.

3.
Phys Rev Lett ; 108(2): 025501, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324696

RESUMEN

A three-dimensional periodic structure is proposed for self-interstitial clusters in body-centered-cubic metals, as opposed to the conventional two-dimensional loop morphology. The underlying crystal structure corresponds to the C15 Laves phase. Using density functional theory and interatomic potential calculations, we demonstrate that in α-iron these C15 aggregates are highly stable and immobile and that they exhibit large antiferromagnetic moments. They form directly in displacement cascades, and they can grow by capturing self-interstitials. They thus constitute an important new element to account for when predicting the microstructural evolution of iron base materials under irradiation.

4.
Phys Rev Lett ; 94(2): 025505, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15698192

RESUMEN

The defect accumulation mechanism of amorphization has been studied for the La2Zr2O7 pyrochlore by means of classical molecular dynamic simulations. Present calculations show that the accumulation of cation Frenkel pairs is the main driving parameter for the amorphization process, while the oxygen atoms simply rearrange around cations. Under Frenkel pair accumulation, the structure follows the pyrochlore-fluorite-amorphous sequence. Present results consequently provide atomic-level interpretation to previous experimental irradiation observations of the two-step phase transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA