Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Anat ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036860

RESUMEN

There has been a long debate about the possibility of multiple contemporaneous species of Australopithecus in both eastern and southern Africa, potentially exhibiting different forms of bipedal locomotion. Here, we describe the previously unreported morphology of the os coxae in the 3.67 Ma Australopithecus prometheus StW 573 from Sterkfontein Member 2, comparing it with variation in ossa coxae in living humans and apes as well as other Plio-Pleistocene hominins. Statistical comparisons indicate that StW 573 and 431 resemble humans in their anteroposteriorly great iliac crest breadth compared with many other early australopiths, whereas Homo ergaster KNM WT 15000 surprisingly also has a relatively anterioposteriorly short iliac crest. StW 573 and StW 431 appear to resemble humans in having a long ischium compared with Sts 14 and KNM WT 15000. A Quadratic Discriminant Function Analysis of morphology compared with other Plio-Pleistocene hominins and a dataset of modern humans and hominoids shows that, while Lovejoy's heuristic model of the Ardipithecus ramidus os coxae falls with Pongo or in an indeterminate group, StW 573 and StW 431 from Sterkfontein Member 4 are consistently classified together with modern humans. Although clearly exhibiting the classic "basin shaped" bipedal pelvis, Sts 14 (also from Sterkfontein), AL 288-1 Australopithecus afarensis, MH2 Australopithecus sediba and KNM-WT 15000 occupy a position more peripheral to modern humans, and in some analyses are assigned to an indeterminate outlying group. Our findings strongly support the existence of two species of Australopithecus at Sterkfontein and the variation we observe in os coxae morphology in early hominins is also likely to reflect multiple forms of bipedality.

2.
J Hum Evol ; 158: 102983, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33888323

RESUMEN

The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.


Asunto(s)
Evolución Biológica , Fósiles , Hominidae/anatomía & histología , Hombro/anatomía & histología , Animales , Femenino , Gorilla gorilla/anatomía & histología , Humanos , Masculino , Escápula/anatomía & histología
3.
Folia Primatol (Basel) ; 92(5-6): 243-275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34583353

RESUMEN

The StW 573 skeleton of Australopithecus prometheus from Sterkfontein Member 2 is some 93% complete and thus by far the most complete member of that genus yet found. Firmly dated at 3.67 Ma, it is one of the earliest specimens of its genus. A crucial aspect of interpretation of locomotor behaviour from fossil remains is an understanding of the palaeoenvironment in which the individual lived and the manner in which it would have used it. While the value of this ecomorphological approach is largely accepted, it has not been widely used as a stable framework on which to build evolutionary biomechanical interpretations. Here, we collate the available evidence on StW 573's anatomy in order, as far as currently possible, to reconstruct what might have been this individual's realized and potential niche. We explore the concept of a common Australopithecus "bauplan" by comparing the morphology and ecological context of StW 573 to that of paenocontemporaneous australopiths including Australopithecus anamensis and KSD-VP-1/1 Australopithecus afarensis. Each was probably substantially arboreal and woodland-dwelling, relying substantially on arboreal resources. We use a hypothesis-driven approach, tested by: virtual experiments, in the case of extinct species; biomechanical analyses of the locomotor behaviour of living great ape species; and analogical experiments with human subjects. From these, we conclude that the habitual locomotor mode of all australopiths was upright bipedalism, whether on the ground or on branches. Some later australopiths such as Australopithecus sediba undoubtedly became more terrestrial, allowing sacrifice of arboreal stability in favour of manual dexterity. Indeed, modern humans retain arboreal climbing skills but have further sacrificed arboreal effectiveness for enhanced ability to sustain striding terrestrial bipedalism over much greater distances. We compare StW 573's locomotor adaptations to those of living great apes and protohominins, and agree with those earlier observers who suggest that the common panin-hominin last common ancestor was postcranially more like Gorilla than Pan.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fósiles , Gorilla gorilla
4.
J Hum Evol ; 133: 167-197, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358179

RESUMEN

Due to its completeness, the A.L. 288-1 ('Lucy') skeleton has long served as the archetypal bipedal Australopithecus. However, there remains considerable debate about its limb proportions. There are three competing, but not necessarily mutually exclusive, explanations for the high humerofemoral index of A.L. 288-1: (1) a retention of proportions from an Ardipithecus-like chimp/human last common ancestor (CLCA); (2) indication of some degree of climbing ability; (3) allometry. Recent discoveries of other partial skeletons of Australopithecus, such as those of Australopithecus sediba (MH1 and MH2) and Australopithecus afarensis (KSD-VP-1/1 and DIK-1/1), have provided new opportunities to test hypotheses of early hominin body size and limb proportions. Yet, no early hominin is as complete (>90%), as is the ∼3.67 Ma 'Little Foot' (StW 573) skeleton from Sterkfontein Member 2. Here, we provide the first descriptions of its upper and lower long limb bones, as well as a comparative context of its limb proportions. We found that StW 573 possesses absolutely longer limb lengths than A.L. 288-1, but both skeletons show similar limb proportions. This finding seems to argue against a purely allometric explanation for A.L. 288-1 limb proportions. In fact, our multivariate allometric analysis suggests that limb lengths of Australopithecus, as represented by StW 573 and A.L. 288-1, exhibit a significantly different (p < 0.001) allometric pattern than that which typifies modern humans and African apes. Like some previous analyses, our results also suggest that hominin limb evolution occurred in two stages with: first, a modest increase in lower limb length and a concurrent shortening of the antebrachium between Ardipithecus and Australopithecus, followed by a considerable lengthening of the lower limb along with a decrease of both upper limb elements occurring between Australopithecus and Homo sapiens.


Asunto(s)
Huesos del Brazo/anatomía & histología , Fémur/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Huesos de la Pierna/anatomía & histología , Animales , Arqueología , Sudáfrica
5.
J Hum Evol ; 133: 78-98, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358185

RESUMEN

The Sterkfontein Caves is currently the world's richest Australopithecus-bearing site. Included in Sterkfontein's hominin assemblage is StW 573 ('Little Foot'), a near-complete Australopithecus skeleton discovered in Member 2 in the Silberberg Grotto. Because of its importance to the fossil hominin record, the geological age of StW 573 has been the subject of significant debate. Three main hypotheses have been proposed regarding the formation and age of Member 2 and by association StW 573. The first proposes that Member 2 (as originally defined in the type section in the Silberberg Grotto) started to accumulate at around 2.58 Ma and that the unit is contained within the Silberberg Grotto. The second proposes that Member 2 started forming before 3.67 ± 0.16 Ma and that the deposit extends into the Milner Hall and close to the base of the cave system. The third proposes a 'two-stage burial scenario', in which some sediments and StW 573 represent a secondary and mixed-age accumulation reworked from a higher cave. The stratigraphic and sedimentological implications of these hypotheses are tested here through the application of a multiscale investigation of Member 2, with reference to the taphonomy of the StW 573 skeleton. The complete infilling sequence of Member 2 is described across all exposures of the deposit in the Silberberg Grotto and into the Milner Hall. Sediments are generally stratified and conformably deposited in a sequence of silty sands eroded from well-developed lateritic soils on the landscape surface. Voids, clasts and bioclasts are organized consistently across and through Member 2 conforming with the underlying deposit geometry, indicating gradual deposit accretion with no distinct collapse facies evident and only localized intra-unit postdepositional modification. The stratigraphy and sedimentology of Member 2 support a simple single-stage accumulation process of Member 2 and a primary association between the sediments of Member 2 and the StW 573 'Little Foot' skeleton.


Asunto(s)
Cuevas , Sedimentos Geológicos/análisis , Hominidae , Animales , Arqueología , Fósiles , Paleontología , Sudáfrica
6.
J Hum Evol ; 127: 67-80, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30777359

RESUMEN

Because of its exceptional degree of preservation and its geological age of ∼3.67 Ma, StW 573 makes an invaluable contribution to our understanding of early hominin evolution and paleobiology. The morphology of the bony labyrinth has the potential to provide information about extinct primate taxonomic diversity, phylogenetic relationships and locomotor behaviour. In this context, we virtually reconstruct and comparatively assess the bony labyrinth morphology in StW 573. As comparative material, we investigate 17 southern African hominin specimens from Sterkfontein, Swartkrans and Makapansgat (plus published data from two specimens from Kromdraai B), attributed to Australopithecus, early Homo or Paranthropus, as well as 10 extant human and 10 extant chimpanzee specimens. We apply a landmark-based geometric morphometric method for quantitatively assessing labyrinthine morphology. Morphology of the inner ear in StW 573 most closely resembles that of another Australopithecus individual from Sterkfontein, StW 578, recovered from the Jacovec Cavern. Within the limits of our sample, we observe a certain degree of morphological variation in the Australopithecus assemblage of Sterkfontein Member 4. Cochlear morphology in StW 573 is similar to that of other Australopithecus as well as to Paranthropus specimens included in this study, but it is substantially different from early Homo. Interestingly, the configuration of semicircular canals in Paranthropus specimens from Swartkrans differs from other fossil hominins, including StW 573. Given the role of the cochlea in the sensory-driven interactions with the surrounding environment, our results offer new perspectives for interpreting early hominin behaviour and ecology. Finally, our study provides additional evidence for discussing the phylogenetic polarity of labyrinthine traits in southern African hominins.


Asunto(s)
Oído Interno/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Evolución Biológica , Rasgos de la Historia de Vida , Sudáfrica
7.
J Hum Evol ; 126: 112-123, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583840

RESUMEN

One of the most crucial debates in human paleoneurology concerns the timing and mode of the emergence of the derived cerebral features in the hominin fossil record. Given its exceptional degree of preservation and geological age (i.e., 3.67 Ma), StW 573 ('Little Foot') has the potential to shed new light on hominin brain evolution. Here we present the first detailed comparative description of the external neuroanatomy of StW 573. The endocast was virtually reconstructed and compared to ten southern African hominin specimens from Makapansgat, Malapa, Sterkfontein and Swartkrans attributed to Australopithecus and Paranthropus. We apply an automatic method for the detection of sulcal and vascular imprints. The endocranial surface of StW 573 is crushed and plastically deformed in a number of locations. The uncorrected and therefore minimum cranial capacity estimate is 408 cm3 and plots at the lower end of Australopithecus variation. The endocast of StW 573 approximates the rostrocaudally elongated and dorsoventrally flattened endocranial shape seen in Australopithecus and displays a distinct left occipital petalia. StW 573 and the comparative early hominin specimens share a similar sulcal pattern in the inferior region of the frontal lobes that also resembles the pattern observed in extant chimpanzees. The presumed lunate sulcus in StW 573 is located above the sigmoid sinus, as in extant chimpanzees, while it is more caudally positioned in SK 1585 and StW 505. The middle branch of the middle meningeal vessels derives from the anterior branch, as in MH 1, MLD 37/38, StW 578. Overall, the cortical anatomy of StW 573 displays a less derived condition compared to the late Pliocene/early Pleistocene southern African hominins (e.g., StW 505, SK 1585).


Asunto(s)
Evolución Biológica , Encéfalo/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Fósiles , Sudáfrica
8.
Folia Primatol (Basel) ; 90(6): 470-493, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31288221

RESUMEN

Due to difficulty of obtaining accurate quantitative data on foot muscles, relatively little has been done to study foot muscle function in non-human apes. Gorilla feet are known to be similar in bony proportions and mechanics to those of humans, hence are key to understanding human foot evolution and its ecological context. We present the first 3D musculoskeletal computer model of a western lowland gorilla foot, giving muscle torques about the tarsometatarsal, metatarsophalangeal and interphalangeal joints of digits 2-5. Peak flexor torque around the fifth metatarsophalangeal joint occurs at a highly flexed position, suggesting an ability to maintain flexed postures around lateral metatarsophalangeal joints, useful for grasping vertical supports. For distal interphalangeal joints, flexor torques peaked the more medial the digit at relatively flexed postures. We report, for the first time, interossei acting upon proximal and distal interphalangeal joints. All these facilitate maintenance of flexed positions around distal interphalangeal joints, likely used for grasping of small supports/objects. Humans lack these features, suggesting that semi-arboreal early hominins made less use of the peripheral canopy than gorillines. Information here could be used in gorilla enclosure design to encourage wild-type locomotor repertoires in captivity.


Asunto(s)
Pie/fisiología , Gorilla gorilla/fisiología , Músculo Esquelético/fisiología , Animales , Fenómenos Biomecánicos , Femenino , Pie/anatomía & histología , Gorilla gorilla/anatomía & histología , Imagenología Tridimensional/veterinaria , Masculino , Modelos Biológicos , Torque
9.
J Anat ; 231(4): 568-584, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28718217

RESUMEN

Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints.


Asunto(s)
Gorilla gorilla/fisiología , Miembro Posterior/fisiología , Imagenología Tridimensional , Articulaciones/fisiología , Modelos Biológicos , Animales , Femenino , Gorilla gorilla/anatomía & histología , Miembro Posterior/anatomía & histología , Articulaciones/anatomía & histología , Masculino , Torque
10.
J Hum Evol ; 103: 45-52, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166907

RESUMEN

An animal's size is central to its ecology, yet remarkably little is known about the selective pressures that drive this trait. A particularly compelling example is how ancestral apes evolved large body mass in such a physically and energetically challenging environment as the forest canopy, where weight-bearing branches and lianas are flexible, irregular and discontinuous, and the majority of preferred foods are situated on the most flexible branches at the periphery of tree crowns. To date the issue has been intractable due to a lack of relevant fossil material, the limited capacity of the fossil record to reconstruct an animal's behavioural ecology and the inability to measure energy consumption in freely moving apes. We studied the oxygen consumption of parkour athletes while they traversed an arboreal-like course as an elite model ape, to test the ecomorphological and behavioural mechanisms by which a large-bodied ape could optimize its energetic performance during tree-based locomotion. Our results show that familiarity with the arboreal-like course allowed the athletes to substantially reduce their energy expenditure. Furthermore, athletes with larger arm spans and shorter legs were particularly adept at finding energetic savings. Our results flesh out the scanty fossil record to offer evidence that long, strong arms, broad chests and a strong axial system, combined with the frequent use of uniform branch-to-branch arboreal pathways, were critical to off-setting the mechanical and energetic demands of large mass in ancestral apes.


Asunto(s)
Atletas , Metabolismo Energético/fisiología , Gorilla gorilla/fisiología , Locomoción/fisiología , Consumo de Oxígeno/fisiología , Pan troglodytes/fisiología , Pongo abelii/fisiología , Soporte de Peso/fisiología , Adolescente , Adulto , Animales , Conducta Alimentaria/fisiología , Fósiles , Humanos , Masculino , Contracción Muscular/fisiología , Adulto Joven
11.
J Anat ; 228(4): 686-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26729562

RESUMEN

In the early 20th century the dominant paradigm for the ecological context of the origins of human bipedalism was arboreal suspension. In the 1960s, however, with recognition of the close genetic relationship of humans, chimpanzees and bonobos, and with the first field studies of mountain gorillas and common chimpanzees, it was assumed that locomotion similar to that of common chimpanzees and mountain gorillas, which appeared to be dominated by terrestrial knuckle-walking, must have given rise to human bipedality. This paradigm has been popular, if not universally dominant, until very recently. However, evidence that neither the knuckle-walking or vertical climbing of these apes is mechanically similar to human bipedalism, as well as the hand-assisted bipedality and orthograde clambering of orang-utans, has cast doubt on this paradigm. It now appears that the dominance of terrestrial knuckle-walking in mountain gorillas is an artefact seen only in the extremes of their range, and that both mountain and lowland gorillas have a generalized orthogrady similar to that seen in orang-utans. These data, together with evidence for continued arboreal competence in humans, mesh well with an increasing weight of fossil evidence suggesting that a mix of orang-utan and gorilla-like arboreal locomotion and upright terrestrial bipedalism characterized most australopiths. The late split date of the panins, corresponding to dates for separation of Homo and Australopithecus, leads to the speculation that competition with chimpanzees, as appears to exist today with gorillas, may have driven ecological changes in hominins and perhaps cladogenesis. However, selection for ecological plasticity and morphological conservatism is a core characteristic of Hominidae as a whole, including Hominini.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Ecosistema , Hominidae , Locomoción , Animales , Fósiles
13.
Am J Phys Anthropol ; 156(1): 58-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263105

RESUMEN

There are at present few comparable studies of lemur locomotion in the wild. This has unfortunately meant we have little knowledge about locomotor variation, and hence flexibility, with regard to differences in support availability and habitat structure. Here we compare the locomotion of Lepilemur edwardsi at Ankarafantsika with that of Lepilemur ruficaudatus at Kirindy-Mitea National Park. While data were collected by two individuals, at different times, both studies used the same data collection protocol and are hence highly comparable. Locomotor mode, support diameter and orientation, heights, and distances traveled were all collected. We find that locomotor specialization, in this case for vertical leaping, has ensured that some support requirements are independent of habitat. For example, both species used vertical supports most often. However, overall support diameter does indicate a certain degree of flexibility, whereby L. ruficaudatus most often used supports ≤5 cm in diameter and L. edwardsi >5 cm in diameter.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Ecosistema , Lemuridae/fisiología , Locomoción/fisiología , Animales , Antropología Física , Femenino , Masculino
14.
Proc Natl Acad Sci U S A ; 109(18): 6873-7, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22509022

RESUMEN

Nest-building orangutans must daily build safe and comfortable nest structures in the forest canopy and do this quickly and effectively using the branches that surround them. This study aimed to investigate the mechanical design and architecture of orangutan nests and determine the degree of technical sophistication used in their construction. We measured the whole nest compliance and the thickness of the branches used and recorded the ways in which the branches were fractured. Branch samples were also collected from the nests and subjected to three-point bending tests to determine their mechanical properties. We demonstrated that the center of the nest is more compliant than the edges; this may add extra comfort and safety to the structure. During construction orangutans use the fact that branches only break half-way across in "greenstick" fracture to weave the main nest structure. They choose thicker branches with greater rigidity and strength to build the main structure in this way. They then detach thinner branches by following greenstick fracture with a twisting action to make the lining. These results suggest that orangutans exhibit a degree of technical knowledge and choice in the construction of nests.


Asunto(s)
Comportamiento de Nidificación , Pongo/psicología , Animales , Fenómenos Biomecánicos , Indonesia , Inteligencia , Estrés Mecánico , Árboles , Madera
15.
Folia Primatol (Basel) ; 86(4): 223-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26111555

RESUMEN

The locomotor behaviour of 2 groups of Propithecus verreauxi (Verreaux's sifaka) was studied over an 8-month period in Kirindy Mitea National Park (KMNP), Madagascar. This paper assesses the major characteristics of their locomotion, focusing on the extent that seasonal variation in climate and habitat, and local variation in habitat, is reflected in changes in locomotor behaviour. P. verreauxi is a committed leaper with a strong preference for vertical and angled supports. We found clear between-group differences in support orientation and diameter suggesting local variation in habitat. During the dry season, P. verreauxi utilizes smaller-diameter supports than in the rainy season. While this difference cannot yet be ascribed to any single cause, we discuss the factors which may contribute to this result.


Asunto(s)
Conducta Animal , Locomoción , Strepsirhini/fisiología , Animales , Clima , Ecosistema , Femenino , Madagascar , Masculino , Estaciones del Año
16.
J Anat ; 225(2): 152-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24925580

RESUMEN

The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking.


Asunto(s)
Articulaciones del Pie/fisiología , Hominidae/fisiología , Caminata/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Humanos , Modelos Anatómicos , Presión , Estrés Mecánico , Falanges de los Dedos del Pie/fisiología
17.
Proc Biol Sci ; 280(1769): 20131818, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23966646

RESUMEN

Fossil evidence for longitudinal arches in the foot is frequently used to constrain the origins of terrestrial bipedality in human ancestors. This approach rests on the prevailing concept that human feet are unique in functioning with a relatively stiff lateral mid-foot, lacking the significant flexion and high plantar pressures present in non-human apes. This paradigm has stood for more than 70 years but has yet to be tested objectively with quantitative data. Herein, we show that plantar pressure records with elevated lateral mid-foot pressures occur frequently in healthy, habitually shod humans, with magnitudes in some individuals approaching absolute maxima across the foot. Furthermore, the same astonishing pressure range is present in bonobos and the orangutan (the most arboreal great ape), yielding overlap with human pressures. Thus, while the mean tendency of habitual mechanics of the mid-foot in healthy humans is indeed consistent with the traditional concept of the lateral mid-foot as a relatively rigid or stabilized structure, it is clear that lateral arch stabilization in humans is not obligate and is often transient. These findings suggest a level of detachment between foot stiffness during gait and osteological structure, hence fossilized bone morphology by itself may only provide a crude indication of mid-foot function in extinct hominins. Evidence for thick plantar tissues in Ardipithecus ramidus suggests that a human-like combination of active and passive modulation of foot compliance by soft tissues extends back into an arboreal context, supporting an arboreal origin of hominin bipedalism in compressive orthogrady. We propose that the musculoskeletal conformation of the modern human mid-foot evolved under selection for a functionally tuneable, rather than obligatory stiff structure.


Asunto(s)
Evolución Biológica , Pie/fisiología , Locomoción , Pan paniscus/fisiología , Pongo/fisiología , Adulto , Anciano , Animales , Adaptabilidad , Femenino , Pie/anatomía & histología , Marcha , Humanos , Masculino , Persona de Mediana Edad , Pan paniscus/anatomía & histología , Pongo/anatomía & histología , Presión , Adulto Joven
18.
Am J Phys Anthropol ; 151(2): 265-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23640691

RESUMEN

We report a Holocene human and animal footprint site from the Namib Sand Sea, south of Walvis Bay, Namibia. Using these data, we explore intratrail footprint variability associated with small variations in substrate properties using a "whole foot" analytical technique developed for the studies in human ichnology. We demonstrate high levels of intratrail variability as a result of variations in grain size, depositional moisture content, and the degree of sediment disturbance, all of which determine the bearing capacity of the substrate. The two principal trails were examined, which had consistent stride and step lengths, and as such variations in print typology were primarily controlled by substrate rather than locomotor mechanics. Footprint typology varies with bearing capacity such that firm substrates show limited impressions associated with areas of peak plantar pressure, whereas softer substrates are associated with deep prints with narrow heels and reduced medial longitudinal arches. Substrates of medium bearing capacity give displacement rims and proximal movement of sediment, which obscures the true form of the medial longitudinal arch. A simple conceptual model is offered which summarizes these conclusions and is presented as a basis for further investigation into the control of substrate on footprint typology. The method, model, and results presented here are essential in the interpretation of any sites of greater paleoanthropological significance, such as recently reported from Ileret (1.5 Ma, Kenya; Bennett et al.: Science 323 (2009) 1197-1201).


Asunto(s)
Pie/anatomía & histología , Pie/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Caminata/historia , Caminata/fisiología , Animales , Antropología Física , Fenómenos Biomecánicos/fisiología , Historia Antigua , Humanos , Namibia
19.
J Biomech ; 157: 111701, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451208

RESUMEN

Motion analysis, as applied to evolutionary biomechanics, has experienced its own evolution over the last 50 years. Here we review how an ever-increasing fossil record, together with continuing advancements in biomechanics techniques, have shaped our understanding of the origin of upright bipedal walking. The original, and long-established hypothesis held by Lamarck (1809), Darwin (1859) and Keith (1934), amongst others, maintained that bipedality originated in an arboreal context. However, the first field studies of gorilla and chimpanzees from the 1960's, highlighted their so-called 'knucklewalking' quadrupedalism, leading scientists to assume, semi-automatically, that knucklewalking must have been the precursor to bipedality. It would not be until the discovery of skeletons of early human relatives Australopithecus afarensis and Australopithecus prometheus, and the inclusion of methods of analysis from computer science, biomechanics, sports science and medicine, that the knucklewalking hypothesis would be most robustly challenged. Their short, but human-like lower limbs and human-like hand indicated that knucklewalking was not part of our ancestral locomotor repertoire. Rather, most current research in evolutionary biomechanics agrees it was a combination of climbing and bipedalism, both in an arboreal context, which facilitated upright, terrestrial, bipedal walking over short distances.


Asunto(s)
Pan troglodytes , Caminata , Animales , Humanos , Fenómenos Biomecánicos , Evolución Biológica , Locomoción
20.
J Anat ; 220(1): 13-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22034995

RESUMEN

The maximum capability of a muscle can be estimated from simple measurements of muscle architecture such as muscle belly mass, fascicle length and physiological cross-sectional area. While the hindlimb anatomy of the non-human apes has been studied in some detail, a comparative study of the forelimb architecture across a number of species has never been undertaken. Here we present data from chimpanzees, bonobos, gorillas and an orangutan to ascertain if, and where, there are functional differences relating to their different locomotor repertoires and habitat usage. We employed a combination of analyses including allometric scaling and ancovas to explore the data, as the sample size was relatively small and heterogeneous (specimens of different sizes, ages and sex). Overall, subject to possible unidentified, confounding factors such as age effects, it appears that the non-human great apes in this sample (the largest assembled to date) do not vary greatly across different muscle architecture parameters, even though they perform different locomotor behaviours at different frequencies. Therefore, it currently appears that the time spent performing a particular behaviour does not necessarily impose a dominating selective influence on the soft-tissue portion of the musculoskeletal system; rather, the overall consistency of muscle architectural properties both between and within the Asian and African apes strengthens the case for the hypothesis of a possible ancient shared evolutionary origin for orthogrady under compressive and/or suspensory loading in the great apes.


Asunto(s)
Adaptación Fisiológica , Miembro Anterior/anatomía & histología , Hominidae/anatomía & histología , Locomoción/fisiología , Músculo Esquelético/anatomía & histología , Análisis de Varianza , Animales , Femenino , Miembro Anterior/fisiología , Gorilla gorilla/anatomía & histología , Músculo Esquelético/fisiología , Pan paniscus/anatomía & histología , Pan troglodytes/anatomía & histología , Pongo pygmaeus/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA