Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30578319

RESUMEN

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Asunto(s)
Lipogénesis , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 112(1): E21-9, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25524627

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals from growth factors, nutrients, and cellular energy status to control a wide range of metabolic processes, including mRNA biogenesis; protein, nucleotide, and lipid synthesis; and autophagy. Deregulation of the mTORC1 pathway is found in cancer as well as genetic disorders such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. Recent studies have shown that the mTORC1 inhibitor rapamycin and its analogs generally suppress proliferation rather than induce apoptosis. Therefore, it is critical to use alternative strategies to induce death of cells with activated mTORC1. In this study, a small-molecule screen has revealed that the combination of glutaminase (GLS) and heat shock protein 90 (Hsp90) inhibitors selectively triggers death of TSC2-deficient cells. At a mechanistic level, high mTORC1-driven translation rates in TSC1/2-deficient cells, unlike wild-type cells, sensitizes these cells to endoplasmic reticulum (ER) stress. Thus, Hsp90 inhibition drives accumulation of unfolded protein and ER stress. When combining proteotoxic stress with oxidative stress by depletion of the intracellular antioxidant glutathione by GLS inhibition, acute cell death is observed in cells with activated mTORC1 signaling. This study suggests that this combination strategy may have the potential to be developed into a therapeutic use for the treatment of mTORC1-driven tumors.


Asunto(s)
Glutaminasa/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Animales , Apoptosis/efectos de los fármacos , Benzoquinonas/farmacología , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamato Deshidrogenasa/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Sirolimus/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfuros/farmacología , Tiadiazoles/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36863346

RESUMEN

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Asunto(s)
Neoplasias , Factores de Transcripción , Animales , Humanos , Ratones , Factor de Transcripción Ikaros , Inmunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismo
4.
Am J Physiol Cell Physiol ; 303(5): C475-85, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22700795

RESUMEN

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos
5.
J Cell Biochem ; 113(2): 695-710, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22006269

RESUMEN

In skeletal muscle, protein levels are determined by relative rates of protein synthesis and breakdown. The balance between synthesis and degradation of intracellular components determines the overall muscle fiber size. AMP-activated protein kinase (AMPK), a sensor of cellular energy status, was recently shown to increase myofibrillar protein degradation through the expression of MAFbx and MuRF1. In the present study, the effect of AMPK activation by AICAR on autophagy was investigated in muscle cells. Our results show that FoxO3a transcription factor activation by AMPK induces the expression of the autophagy-related proteins LC3B-II, Gabarapl1, and Beclin1 in primary mouse skeletal muscle myotubes and in the Tibialis anterior (TA) muscle. Time course studies reveal that AMPK activation by AICAR leads to a transient nuclear relocalization of FoxO3a followed by an increase of its cytosolic level. Moreover, AMPK activation leads to the inhibition of mTORC1 and its subsequent dissociation of Ulk1, Atg13, and FIP200 complex. Interestingly, we identify Ulk1 as a new interacting partner of AMPK in muscle cells and we show that Ulk1 is associated with AMPK under normal conditions and dissociates from AMPK during autophagy process. Moreover, we find that AMPK phosphorylates FoxO3a and Ulk1. In conclusion, our data show that AMPK activation stimulates autophagy in skeletal muscle cells through its effects on the transcriptional function of FoxO3a and takes part in the initiation of autophagosome formation by interacting with Ulk1. Here, we present new evidences that AMPK plays a crucial role in the fine tuning of protein expression programs that control skeletal muscle mass.


Asunto(s)
Adenilato Quinasa/fisiología , Autofagia , Factores de Transcripción Forkhead/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenilato Quinasa/metabolismo , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Línea Celular , Secuencia Conservada , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/química , Expresión Génica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Fibras Musculares Esqueléticas/enzimología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular , Fosforilación , Cultivo Primario de Células , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas , Proteínas/metabolismo , Ribonucleótidos , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354498

RESUMEN

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertrofia/enzimología , Hipertrofia/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Mapeo de Interacción de Proteínas , Ubiquitinación
7.
BMC Biol ; 9: 69, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22018140

RESUMEN

The elevated metabolic requirements of cancer cells reflect their rapid growth and proliferation and are met through mutations in oncogenes and tumor suppressor genes that reprogram cellular processes. For example, in tuberous sclerosis complex (TSC)-related tumors, the loss of TSC1/2 function causes constitutive mTORC1 activity, which stimulates glycolysis, resulting in glucose addiction in vitro. In research published in Cell and Bioscience, Jiang and colleagues show that pharmacological restriction of glucose metabolism decreases tumor progression in a TSC xenograft model.


Asunto(s)
Glucólisis , Neoplasias/metabolismo , Neoplasias/terapia , Esclerosis Tuberosa/metabolismo , Animales , Humanos , Mutación/genética , Transducción de Señal
8.
Nat Med ; 24(4): 497-504, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29457796

RESUMEN

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/genética , Piperazinas/farmacología , Piridinas/farmacología , Empalme del ARN/genética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Empalmosomas/genética , Administración Oral , Animales , Secuencia de Bases , Humanos , Intrones/genética , Células K562 , Leucemia/genética , Leucemia/patología , Ratones , Mutación , Neoplasias/patología , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Curr Biol ; 24(19): 2274-80, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25220053

RESUMEN

Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation. Glutamine is catabolyzed to α-ketoglutarate (αKG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination reactions, the first requiring glutaminase (GLS) to generate glutamate and the second occurring via glutamate dehydrogenase (GDH) or transaminases. Activation of the mTORC1 pathway has been shown previously to promote the anaplerotic entry of glutamine to the TCA cycle via GDH. Moreover, mTORC1 activation also stimulates the uptake of glutamine, but the mechanism is unknown. It is generally thought that rates of glutamine utilization are limited by mitochondrial uptake via GLS, suggesting that, in addition to GDH, mTORC1 could regulate GLS. Here we demonstrate that mTORC1 positively regulates GLS and glutamine flux through this enzyme. We show that mTORC1 controls GLS levels through the S6K1-dependent regulation of c-Myc (Myc). Molecularly, S6K1 enhances Myc translation efficiency by modulating the phosphorylation of eukaryotic initiation factor eIF4B, which is critical to unwind its structured 5' untranslated region (5'UTR). Finally, our data show that the pharmacological inhibition of GLS is a promising target in pancreatic cancers expressing low levels of PTEN.


Asunto(s)
Proteínas de Unión al ADN/genética , Factores Eucarióticos de Iniciación/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Factores de Transcripción/genética , Línea Celular , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
10.
J Exp Med ; 211(1): 15-28, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24395886

RESUMEN

Lymphangioleiomyomatosis (LAM) is a progressive neoplastic disorder that leads to lung destruction and respiratory failure primarily in women. LAM is typically caused by tuberous sclerosis complex 2 (TSC2) mutations resulting in mTORC1 activation in proliferative smooth muscle-like cells in the lung. The female predominance of LAM suggests that estradiol contributes to disease development. Metabolomic profiling identified an estradiol-enhanced prostaglandin biosynthesis signature in Tsc2-deficient (TSC(-)) cells, both in vitro and in vivo. Estradiol increased the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in prostaglandin biosynthesis, which was also increased at baseline in TSC-deficient cells and was not affected by rapamycin treatment. However, both Torin 1 treatment and Rictor knockdown led to reduced COX-2 expression and phospho-Akt-S473. Prostaglandin production was also increased in TSC-deficient cells. In preclinical models, both Celecoxib and aspirin reduced tumor development. LAM patients had significantly higher serum prostaglandin levels than healthy women. 15-epi-lipoxin-A4 was identified in exhaled breath condensate from LAM subjects and was increased by aspirin treatment, indicative of functional COX-2 expression in the LAM airway. In vitro, 15-epi-lipoxin-A4 reduced the proliferation of LAM patient-derived cells in a dose-dependent manner. Targeting COX-2 and prostaglandin pathways may have therapeutic value in LAM and TSC-related diseases, and possibly in other conditions associated with mTOR hyperactivation.


Asunto(s)
Carcinogénesis/metabolismo , Estradiol/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Linfangioleiomiomatosis/metabolismo , Complejos Multiproteicos/metabolismo , Prostaglandinas/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Análisis de Varianza , Animales , Aspirina/farmacología , Pruebas Respiratorias , Proteínas Portadoras/genética , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inmunohistoquímica , Lipoxinas/análisis , Diana Mecanicista del Complejo 2 de la Rapamicina , Metabolómica , Ratones , Ratones SCID , Microscopía Confocal , Naftiridinas/farmacología , Prostaglandinas/sangre , Proteína Asociada al mTOR Insensible a la Rapamicina , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia
11.
Int J Biochem Cell Biol ; 45(10): 2158-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23769948

RESUMEN

The eukaryotic initiation factor 3 subunit f (eIF3f) is one of the 13 subunits of the translation initiation factor complex eIF3 required for several steps in the initiation of mRNA translation. In skeletal muscle, recent studies have demonstrated that eIF3f plays a central role in skeletal muscle size maintenance. Accordingly, eIF3f overexpression results in hypertrophy through modulation of protein synthesis via the mTORC1 pathway. Importantly, eIF3f was described as a target of the E3 ubiquitin ligase MAFbx/atrogin-1 for proteasome-mediated breakdown under atrophic conditions. The biological importance of the MAFbx/atrogin-1-dependent targeting of eFI3f is highlighted by the finding that expression of an eIF3f mutant insensitive to MAFbx/atrogin-1 polyubiquitination is associated with enhanced protection against starvation-induced muscle atrophy. A better understanding of the precise role of this subunit should lead to the development of new therapeutic approaches to prevent or limit muscle wasting that prevails in numerous physiological and pathological states such as immobilization, aging, denervated conditions, neuromuscular diseases, AIDS, cancer, diabetes. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Animales , Proliferación Celular , Factor 3 de Iniciación Eucariótica/genética , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Biosíntesis de Proteínas , Transducción de Señal
12.
Cancer Res ; 73(14): 4429-38, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23687346

RESUMEN

Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation, whereas increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.


Asunto(s)
Glucosa/metabolismo , Glutamina/metabolismo , Metformina/farmacología , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Oxidación-Reducción , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
13.
Cancer Cell ; 23(4): 450-63, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562301

RESUMEN

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.


Asunto(s)
Daño del ADN , Glutamina/antagonistas & inhibidores , Glutamina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neoplasias Experimentales/genética , Sirtuinas/genética , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Reparación del ADN , Femenino , Glutamina/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Transducción de Señal , Sirtuinas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
PLoS One ; 5(4): e10070, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20383279

RESUMEN

Angiotensin II (Ang II) plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2)(*-)-dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt). Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473) and Thr(308) as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(P)Hoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139), close to their active site Asp(166/149), in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein nitration as a major mechanism in the regulation of Ang II and insulin signaling pathways and more particularly as a key regulator of protein kinase activity.


Asunto(s)
Angiotensina II/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitratos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina/metabolismo , Animales , Células Cultivadas , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Transporte de Proteínas , Ratas
15.
PLoS One ; 5(2): e8994, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20126553

RESUMEN

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Animales , Sitios de Unión/genética , Western Blotting , Diferenciación Celular , Aumento de la Célula , Células Cultivadas , Factor 3 de Iniciación Eucariótica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/genética , Lisina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Mioblastos Esqueléticos/citología , Unión Proteica , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
16.
PLoS One ; 4(3): e4973, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19319192

RESUMEN

Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.


Asunto(s)
Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Atrofia Muscular/prevención & control , Mutación , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Proteínas Ligasas SKP Cullina F-box/genética
17.
J Biol Chem ; 284(7): 4413-21, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19073596

RESUMEN

We recently presented evidence that the subunit eIF3-f of the eukaryotic initiation translation factor eIF3 that interacts with the E3-ligase Atrogin-1/muscle atrophy F-box (MAFbx) for polyubiquitination and proteasome-mediated degradation is a key target that accounts for MAFbx function during muscle atrophy. To understand this process, deletion analysis was used to identify the region of eIF3-f that is required for its proteolysis. Here, we report that the highly conserved C-terminal domain of eIF3-f is implicated for MAFbx-directed polyubiquitination and proteasomal degradation. Site-directed mutagenesis of eIF3-f revealed that the six lysine residues within this domain are required for full polyubiquitination and degradation by the proteasome. In addition, mutation of these six lysines (mutant K(5-10)R) displayed hypertrophic activity in cellulo and in vivo and was able to protect against starvation-induced muscle atrophy. Taken together, our data demonstrate that the C-terminal modifications, believed to be critical for proper eIF3-f regulation, are essential and contribute to a fine-tuning mechanism that plays an important role for eIF3-f function in skeletal muscle.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Lisina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Lisina/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína/genética , Proteínas Ligasas SKP Cullina F-box/genética , Inanición/genética , Inanición/metabolismo , Inanición/patología , Ubiquitinación/genética
18.
Cell Cycle ; 7(12): 1698-701, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18583931

RESUMEN

The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase upregulated during disuse, immobilization and fasting or systemic diseases such as diabetes, cancer, AIDS and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f acts as a "translational enhancer" that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependent control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas , Animales , Factor 3 de Iniciación Eucariótica/antagonistas & inhibidores , Humanos , Hipertrofia , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/etiología , Atrofia Muscular/genética , Proteínas Quinasas/metabolismo , Subunidades de Proteína/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Síndrome Debilitante/terapia
19.
Arch. venez. farmacol. ter ; 26(2): 98-104, 2007. ilus, graf
Artículo en Español | LILACS | ID: lil-516927

RESUMEN

La adrenomedulina (AM) y el péptido relacionado con el gen de la calcitonina (CGRP) pertenecen a la superfamilia de los péptidos de CGRP. En el SNC, los sitios de unión para la AM y el CGRP se encuentran presentes en áreas hipotalámicas y en la corteza cerebelosa de la rata. La administración central de AM o de CGRP en ratas induce diuresis, natriuresis e incremento de la presión arterial. El papel de la AM en el cerebelo se desconoce. Con el fin de establecer la posible relación de la AM y CGRP cerebelosa y la regulación cardiovascular, en el presente estudio evaluamos la densidad de sitios de unión para la AM y el CGRP en el cerebelo de ratas espontáneamente hipertensas (SHR) y sus controles normotensos Wistar Kyoto (WKY) adultos de 16 semanas, mediante el uso de técnicas autoradiografícas y empleando 125I-hCGRPα y 125I-hAM13-52 como radioligandos. Los cortes coronales de cerebelo fueron incubados con 35 pM de [125I]-hCGRPα o [125I]-hAM13-52, durante 90 y 120 minutos, respectivamente. La unión no específica fue determinada en presencia de 1µM del ligando no marcado. El análisis densitométrico demostró que existe una colocalización de los sitios de unión para el [125I]-hCGRPα y la [125I]-hAM13-52 en la corteza cerebelosa. En el cerebelo la unión de la [125I]-hAM13-52 en las ratas SHR fue significativamente mayor que las WKY, indicando una mayor expresión de los receptores para la AM en el cerebelo de animales hipertensos. En relación a la unión de [125I]-hCGRPα, se observó también un pequeño incremento significativo en las ratas SHR en relación a las WKY. Con el fin de establecer la posible vía de señalización de la AM en la corteza cerebelosa, se evaluó la actividad de la óxido nítrico sintasa inducida por la AM.


Asunto(s)
Masculino , Animales , Ratas , Adrenomedulina/fisiología , Cerebelo/fisiología , Hipertensión/fisiopatología , Óxido Nítrico/metabolismo , Péptido Relacionado con Gen de Calcitonina/fisiología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Receptores de Péptido Relacionado con el Gen de Calcitonina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA