Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Bacteriol ; 195(7): 1515-24, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354746

RESUMEN

A major constituent of many Staphylococcus aureus biofilms is a polysaccharide known as the polysaccharide intercellular adhesin, or poly N-acetylglucosamine (PIA/PNAG). PIA/PNAG is synthesized by the 4 gene products of the icaADBC operon, which is negatively regulated by the divergently transcribed icaR gene. We previously reported the identification of a gene, rbf, involved in the positive transcriptional regulation of icaADBC transcription by repressing icaR in S. aureus strain 8325-4. However, we were unable to show binding of Rbf to DNA upstream of icaR or icaA, suggesting that Rbf may control expression of an unknown factor(s) that, in turn, regulates ica expression. Here we report that the unknown factor is SarX protein. Results from epistasis assays and genetic complementation analyses suggest that Rbf upregulates SarX, which then downregulates IcaR, thereby activating icaADBC. Electrophoretic mobility shift assays revealed that SarX protein bound to a sequence upstream of icaR within the icaA coding region. Cross-linking and immunoprecipitation experiments further suggested that Rbf binds to the sarX promoter in S. aureus. These results demonstrate that Rbf and SarX represent a regulatory cascade that promotes PIA-dependent biofilm formation in S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/fisiología , Inmunoprecipitación de Cromatina , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Epistasis Genética , Prueba de Complementación Genética , Unión Proteica , Staphylococcus aureus/genética
2.
J Bacteriol ; 193(19): 5231-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21804010

RESUMEN

Biofilms contribute to virulence of Staphylococcus aureus. Formation of biofilms is multifactorial, involving polysaccharide, protein, and DNA components, which are controlled by various regulators. Here we report that deletion of the rsp gene resulted in an increase in biofilm formation in strain MW2, suggesting that Rsp is a repressor of biofilm formation. Using SDS-PAGE, we found that Rsp profoundly affected cell surface and secreted proteins. The rsp gene was transcribed monocistronically, and the transcripts were most abundant at the exponential growth phase. Microarray analyses revealed that Rsp represses 75 genes, including 9 genes encoding cell wall-anchored proteins, and activates 22 genes, including 5 genes encoding secreted proteases. Among these genes, fnbA, fnbB, sasG, and spa (which encode cell wall-anchored proteins) and splABCD (which encode secreted proteases) have been implicated in biofilm formation. To deconvolute Rsp's contribution to biofilm formation, we analyzed deletion mutants of these genes either in the wild-type or in the rsp mutant background. We found that fnbA deletion in the rsp mutant restored biofilm formation to the wild-type level, indicating that FnbA plays a major role in Rsp regulation of biofilm formation. Further studies revealed that Rsp inhibited biofilm formation at the stage of primary attachment through repressing fnbA. Rsp belongs to the AraC/XylS family of regulatory proteins. We expressed the putative Rsp DNA binding domain (RspDBD) in Escherichia coli and showed that RspDBD was able to specifically bind to a short DNA fragment containing the fnbA promoter, suggesting that Rsp represses fnbA expression by direct DNA binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Northern Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/genética , Staphylococcus aureus/genética
3.
J Bacteriol ; 191(20): 6363-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19684134

RESUMEN

We previously reported the identification of a gene, rbf, involved in the regulation of biofilm formation by Staphylococcus aureus 8325-4. In an effort to study the mechanism of regulation, microarrays were used to compare the transcription profiles of the wild-type strain with an rbf mutant and an rbf overexpression strain of the clinical isolate UAMS-1. Among the genes affected by rbf overexpression are those of the intercellular adhesion (ica) locus; however, expression of these genes was not affected by an rbf deletion in the chromosome. The icaADBC genes are responsible for production of poly-N-acetylglucosamine (PNAG), a major constituent of biofilm. The icaR gene encodes a negative regulator of icaADBC. In UAMS-1 carrying an Rbf-encoding plasmid, Rbf was found to repress icaR transcription with a concomitant increase in icaADBC expression and increased PNAG and biofilm production relative to isogenic strains lacking the plasmid. Sequencing of the rbf gene from UAMS-1 showed that there was a 2-bp insertion affecting the 50th codon of the rbf open reading frame, suggesting that rbf is a pseudogene in UAMS-1. This finding explains why deletion of rbf had no effect on biofilm formation in UAMS-1. To further characterize the Rbf regulation on biofilm we compared biofilm formation, icaA and icaR transcription, and PNAG production in 8325-4 and its isogenic rbf and icaR single mutants and an rbf icaR double mutant. Our results are consistent with a model wherein rbf represses synthesis of icaR, which in turn results in derepression of icaADBC and increased PNAG production. Furthermore, purified rbf did not bind to the icaR or icaA promoter region, suggesting that rbf controls expression of an unknown factor(s) that represses icaR. The role of rbf in controlling the S. aureus biofilm phenotype was further demonstrated in a clinical strain, MW2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Staphylococcus aureus/fisiología , Proteínas Bacterianas/genética , Familia de Multigenes , Regulación hacia Arriba
4.
PLoS One ; 10(4): e0123027, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853849

RESUMEN

The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline for leucine at amino acid 18. Strain Newman is unable to form a robust biofilm and we report here that the biofilm-deficient phenotype is due to the saeSP allele. Replacement of the Newman saeSP with saeSL, or deletion of saeRS, resulted in a biofilm-proficient phenotype. Newman culture supernatants were observed to inhibit biofilm formation by other S. aureus strains, but did not affect biofilm formation by S. epidermidis. Culture supernatants of Newman saeSL or Newman ΔsaeRS had no significant effect on biofilm formation. The inhibitory factor was inactivated by incubation with proteinase K, but survived heating, indicating that the inhibitory protein is heat-stable. The inhibitory protein was found to affect the attachment step in biofilm formation, but had no effect on preformed biofilms. Replacement of saeSL with saeSP in the biofilm-proficient S. aureus USA300 FPR3757 resulted in the loss of biofilm formation. Culture supernatants of USA300 FPR3757 saeSP, did not inhibit biofilm formation by other staphylococci, suggesting that the inhibitory factor is produced but not secreted in the mutant strain. A number of biochemical methods were utilized to isolate the inhibitory protein. Although a number of candidate proteins were identified, none were found to be the actual inhibitor. In an effort to reduce the number of potential inhibitory genes, RNA-Seq analyses were done with wild-type strain Newman and the saeSL and ΔsaeRS mutants. RNA-Seq results indicated that sae regulates many genes that may affect biofilm formation by Newman.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Quinasas/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Humanos , Fosforilación , Proteínas Quinasas/biosíntesis , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Factores de Transcripción
5.
Artículo en Inglés | MEDLINE | ID: mdl-23061050

RESUMEN

The formation of biofilms by Staphylococcus aureus and Staphylococcus epidermidis is an important aspect of many staphylococcal infections, most notably endocarditis, osteomyelitis and infections associated with indwelling medical devices. The major constituents of staphylococcal biofilms are polysaccharides, such as poly N-acetyl glucosamine (PIA/PNAG), cell surface and secreted bacterial proteins, and extracellular DNA. The exact composition of biofilms often varies considerably between different strains of staphylococci and between different sites of infection by the same strain. PIA/PNAG is synthesized by the products of four genes, icaADBC, that are encoded in a single operon. A fifth gene, icaR, is a negative regulator of icaADBC. Expression of icaADBC is tightly regulated, but can often be induced in vitro by growing staphylococci in the presence of high salt, high glucose, or ethanol. Regulation of icaADBC is complex and numerous regulatory factors have been implicated in control of icaADBC. Many of these are well known global transcriptional regulatory factors like SarA and sigmaB, whereas other regulators, such as IcaR, seem to affect expression of relatively few genes. Here, we will summarize how various regulatory factors affect the production of PIA/PNAG in staphylococci.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/fisiología , Redes y Vías Metabólicas/genética , Operón , Regulón , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Estrés Fisiológico
6.
BMC Res Notes ; 5: 5, 2012 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-22221385

RESUMEN

BACKGROUND: Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration. FINDINGS: We have developed a single-copy integration system that enables the cloning vector to integrate at a specific engineered site, within an untranscribed intergenic region, in the chromosome of Staphylococcus aureus. This system is based on the lysogenic phage L54a site-specific recombination system in which the L54a phage (attP) and chromosome (attB) attachment sites, which share an 18-bp identical core sequence, were modified with identical mutations. The integration vector, pLL102, was constructed to contain the modified L54a attP site (attP2) that was altered at 5 nucleotide positions within the core sequence. In the recipient strain, the similarly modified attB site (attB2) was inserted in an intergenic region devoid of detectable transcription read-through. Integration of the vector, which is unable to replicate in S. aureus extrachromosomally, was achieved by providing the L54a integrase gene in a plasmid in the recipient. We showed that pLL102 integrated specifically at the engineered site rather than at the native L54a attB site and that integration did not have a significant effect on transcription of genes immediately upstream or downstream of the integration site. CONCLUSIONS: In this work, we describe an E. coli-S. aureus shuttle vector that can be used to introduce any cloned gene into the S. aureus chromosome at a select site without affecting gene expression. The vector should be useful for genetic manipulation of S. aureus and for marking strains for in vivo studies.

7.
Infect Immun ; 73(4): 2040-50, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15784545

RESUMEN

Microbial pathogens often exploit human complement regulatory proteins such as factor H (FH) and factor H-like protein 1 (FHL-1) for immune evasion. Fba is an FH and FHL-1 binding protein expressed on the surface of the human pathogenic bacterium Streptococcus pyogenes, a common agent of pharyngeal, skin, and soft-tissue infections. Fba has been shown to contribute to phagocytosis resistance, intracellular invasion, and virulence in mice. Here, we look at the role of Fba in recruitment of FH and FHL-1 by five serotype M1 isolates of streptococci. Inactivation of fba greatly inhibited binding of FH and FHL-1 by all isolates, indicating that Fba is a major FH and FHL-1 binding factor of serotype M1 streptococci. For three isolates, FH binding was significantly reduced in stationary-phase cultures and correlated with high levels of protease activity and SpeB (an extracellular cysteine protease) protein in culture supernatants. Analysis of a speB mutant confirmed that SpeB accounts for the loss of Fba from the cell surface, suggesting that the protease may modulate FH and FHL-1 recruitment during infection. Comparisons of fba DNA sequences revealed that the FH and FHL-1 binding site in Fba is conserved among the M1 isolates. Although the ligand binding site is not strictly conserved in Fba from a serotype M49 isolate, the M49 Fba protein was found to bind both FH and FHL-1. Collectively, these data indicate that binding of FH and FHL-1 is a conserved function of Fba while modulation of Fba function by SpeB is variable.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/fisiología , Proteínas Sanguíneas/metabolismo , Factor H de Complemento/metabolismo , Exotoxinas/fisiología , Streptococcus pyogenes/fisiología , Secuencia de Aminoácidos , Proteínas Portadoras/fisiología , Proteínas Inactivadoras del Complemento C3b , Fructosa-Bifosfato Aldolasa , Humanos , Datos de Secuencia Molecular
8.
Infect Immun ; 70(11): 6206-14, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12379699

RESUMEN

Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1(+) Fba(+) streptococci preferentially bind FHL-1, whereas M1(-) Fba(+) streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis.


Asunto(s)
Adhesinas Bacterianas , Antígenos Bacterianos , Proteínas Sanguíneas/fisiología , Activación de Complemento , Factor H de Complemento/fisiología , Streptococcus pyogenes/inmunología , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Complemento C3/metabolismo , Proteínas Inactivadoras del Complemento C3b , Cisteína Endopeptidasas/genética , Humanos , Fagocitosis
9.
Infect Immun ; 71(12): 7119-28, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14638802

RESUMEN

Numerous microbial pathogens exploit complement regulatory proteins such as factor H (FH) and factor H-like protein 1 (FHL-1) for immune evasion. Fba is an FHL-1 and FH binding protein expressed on the surface of the human pathogenic bacterium, Streptococcus pyogenes, a common agent of pharyngeal, skin, and soft-tissue infections. In the present study, we demonstrate that Fba and FHL-1 work in concert to promote invasion of epithelial cells by S. pyogenes. Fba fragments were expressed as recombinant proteins and assayed for binding of FHL-1 and FH by Western blotting, enzyme-linked immunosorbent assay, and surface plasmon resonance. A binding site for FHL-1 and FH was localized to the N-terminal half of Fba, a region predicted to contain a coiled-coil domain. Deletion of this coiled-coil domain greatly reduced FHL-1 and FH binding. PepSpot analyses identified a 16-amino-acid segment of Fba which overlaps the coiled-coil domain that binds both FHL-1 and FH. To localize the Fba binding site in FHL-1 and FH, surface plasmon resonance was used to assess the interactions between the streptococcal protein and a series of recombinant FH deletion constructs. The Fba binding site was localized to short consensus repeat 7 (SCR 7), a domain common to FHL-1 and FH. SCR 7 contains a heparin binding site, and heparin was found to inhibit FHL-1 binding to Fba. FHL-1 promoted entry of Fba(+) group A streptococci into epithelial cells in a dose-dependent manner but did not affect invasion by an isogenic fba mutant. To our knowledge, this is the first report of a bacterial pathogen exploiting a soluble complement regulatory protein for entry into host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/metabolismo , Factor H de Complemento/metabolismo , Streptococcus pyogenes/patogenicidad , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Línea Celular , Activación de Complemento , Células Epiteliales/microbiología , Fructosa-Bifosfato Aldolasa , Humanos , Pulmón/citología , Pulmón/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA