Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(33): e2311339, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38529739

RESUMEN

In this work, it is reported that zirconium oxide (ZrO2) doped organosilica nanodots (OSiNDs: ZrO2) with light- and charge-management properties serve as efficient cathode interlayers for high-efficiency inverted organic solar cells (i-OSCs). ZrO2 doping effectively improves the light harvesting of the active layer, the physical contact between the active layer, as well as the electron collection property by habiting charge recombination loss. Consequently, all devices utilizing the OSiNDs: ZrO2 cathode interlayer exhibit enhanced power conversion efficiency (PCE). Specifically, i-OSCs based on PM6:Y6 and PM6:BTP-eC9 achieve remarkable PCEs of 17.16% and 18.43%, respectively. Furthermore, the PCE of device based on PM6:Y6 maintains over 97.2% of its original value following AM 1.5G illumination (including UV light) at 100 mW cm-2 for 600 min.

2.
Nanotechnology ; 35(3)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37673042

RESUMEN

In this work, the one-dimensional (1D) Ni-Co-Se nanowire arrays with rich grain-boundaries were prepared through the solvothermal method and gas-phase selenizaiton. The results showed that the structure and crystallization of the Ni-Co-Se nanowire arrays could be modulated through the optimization of selenizaiton time. The optimal Ni-Co-Se electrode sample displayed an area specific capacitance of 242.6µAh cm-2at 30 mA cm-2with a current retention rate of 68.34%. The assembled Ni-Co-Se/Active carbon (AC) electrode-based asymmetric supercapacitor (ASC) showed the area specific capacitances of 329.2µAh cm-2and 225.8µAh cm-2at 3 mA cm-2and 30 mA cm-2, respectively. A 73.33% retention rate of capacitance was observed after 8000 charge/discharge cycles. Besides, the further fabricated all-solid ASC delivered the power densities of 342.94 W kg-1and 3441.33 W kg-1at the energy densities of 37.62 Wh kg-1and 25.81 Wh kg-1, respectively. Those results suggested the potentials of the obtained Ni-Co-Se nanowire arrays as electrode material for the high-performance pseudocapacitors.

3.
Nanotechnology ; 34(22)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36854175

RESUMEN

Ga2O3is a good candidate for deep ultraviolet photodetectors due to its wide-bandgap, good chemical, and thermal stability. Ga2O3-based photoelectrochemical (PEC) photodetectors attract increasing attention due to the simple fabrication and self-powered capability, but the corresponding photoresponse is still inferior. In this paper, the oxygen vacancy (Vo) engineering towardsα-Ga2O3was proposed to obtain high-performance PEC photodetectors. Theα-Ga2O3nanorods were synthesized by a simple hydrothermal method with an annealing process. The final samples were named as Ga2O3-400, Ga2O3-500, and Ga2O3-600 for annealing at 400 ℃, 500 ℃, and 600 ℃, respectively. Different annealing temperatures lead to different Voconcentrations in theα-Ga2O3nanorods. The responsivity is 101.5 mA W-1for Ga2O3-400 nanorod film-based PEC photodetectors under 254 nm illumination, which is 1.4 and 4.0 times higher than those of Ga2O3-500 and Ga2O3-600 nanorod film-based PEC photodetectors, respectively. The photoresponse ofα-Ga2O3nanorod film-based PEC photodetectors strongly depends on the Voconcentration and high Voconcentration accelerates the interfacial carrier transfer of Ga2O3-400, enhancing the photoresponse of Ga2O3-400 nanorod film-based PEC photodetectors. Furthermore, theα-Ga2O3nanorod film-based PEC photodetectors have good multicycle, long-term stability, and repeatability. Our result shows thatα-Ga2O3nanorods have promising applications in deep UV photodetectors.

4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835236

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. At present, the mortality rate of the deadly disease is still very high, while the existing treatments only delay the progression of the disease and improve the quality of life of patients. Lung cancer (LC) is the most fatal disease in the world. In recent years, IPF has been considered to be an independent risk factor for the development of LC. The incidence of lung cancer is increased in the patients with IPF and the mortality is also significantly increased in the patients inflicted with the two diseases. In this study, we evaluated an animal model of pulmonary fibrosis complicated with LC by implanting LC cells orthotopically into the lungs of mice several days after bleomycin induction of the pulmonary fibrosis in the same mice. In vivo studies with the model showed that exogenous recombinant human thymosin beta 4 (exo-rhTß4) alleviated the impairment of lung function and severity of damage of the alveolar structure by the pulmonary fibrosis and inhibited the proliferation of LC tumor growth. In addition, in vitro studies showed that exo-rhTß4 inhibited the proliferation and migration of A549 and Mlg cells. Furthermore, our results also showed that rhTß4 could effectively inhibit the JAK2-STAT3 signaling pathway and this might exert an anti-IPF-LC effect. The establishment of the IPF-LC animal model will be helpful for the development of drugs for the treatment of IPF-LC. Exogenous rhTß4 can be potentially used for the treatment of IPF and LC.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Timosina , Animales , Humanos , Ratones , Bleomicina , Fibrosis Pulmonar Idiopática/terapia , Janus Quinasa 2/metabolismo , Pulmón/patología , Neoplasias Pulmonares/terapia , Calidad de Vida , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Timosina/uso terapéutico
5.
J Comput Aided Mol Des ; 36(2): 141-155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35050436

RESUMEN

Jasmonates induce the protein-protein interaction between the F-box protein CORONATINE INSENSITIVE 1 (COI1) and jasmonate ZIM-domain proteins (JAZs) in the presence of inositol phosphate, which made the degradation of JAZs and the release of the JAZ-repressed transcription factors. They are involved in the regulation of a wide range of physiology process, including plant growth, development and stress response. Coronatine-O-methyloxime (COR-MO) prevents the binding of COI1-JAZ, acting as an antagonist for jasmonate signaling pathway, while the understanding on the molecular basis of its action as an antagonist is still lacking at atomic level. In this study, we explored the interaction mechanism of jasmonate antagonists through molecular docking, molecular dynamics (MD) simulation, residue interaction network analysis and binding free energy calculation. Compared with the agonists, the conformation of JAZ1 is different in response to the binding with antagonist. Antagonists lost hydrogen bond interaction with Ala204 and Arg206 in JAZ1, and Arg496 in COI1, which results that the sidechain of Arg206 in JAZ1 rotates and unable to penetrate into COI1, so that it lost interaction with 1,5-InsP8. It is indicated that the agonist is more closely associated with 1,5-InsP8 than the antagonist based on the residue interaction network analysis. The binding free energy of JA-Ile-MO/COR-MO with JAZ1 is higher than that of JA-Ile/COR. It is unfavorable for the binding of JAZ1 with COI1 in the presence of antagonists. This study provides a basis for the understanding of the interaction mechanism of jasmonate agonists/antagonists, which will contribute to the discovery of novel jasmonate agonists/antagonists.


Asunto(s)
Simulación de Dinámica Molecular , Oxilipinas , Ciclopentanos , Simulación del Acoplamiento Molecular , Oxilipinas/metabolismo , Factores de Transcripción
6.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35272279

RESUMEN

In this work, the density and electronic structures of the metal active sites in NiCo2O4nanorod arrays were concurrently tuned by controlling the sample's exposure time in a phosphorization process. The results showed that both the density and electronic structure of the active adsorption sites played a key role towards the catalytic activity for water splitting to produce hydrogen. The optimal catalyst exhibited 81 mV overpotential for hydrogen evolution reaction (HER) at 10 mA cm-2and 313 mV overpotential towards oxygen evolution reaction at 50 mA cm-2. The assembled electrode delivered a current density of 50 mA cm-2at 1.694 V in a fully functional water electrolyzer. The further results of theoretical density functional theory calculations revealed the doping of P elements lowered down the H adsorption energies involved in the water splitting process on the various active sites of P-NiCo2O4-10 catalyst, and thus enhanced its HER catalytic activities.

7.
Phytother Res ; 36(4): 1807-1821, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35229382

RESUMEN

Most antiangiogenic inhibitors targeting endothelium-dependent vessels cannot inhibit tumor growth but promote tumor invasion and metastasis in some patients. Vasculogenic mimicry (VM) employs mechanisms that differ from those used to construct endothelium-dependent vessels. Inhibiting VM may be a novel antiangiogenic strategy against alternative tumor vascularization. In this paper, myricetin was selected from among several flavonoid compounds as an effective PAR1 antagonist. In two different hepatocellular carcinoma (HCC) cell lines high-expressed PAR1, myricetin inhibited cell migration, invasion and VM formation and reversed the expression of epithelial-endothelial transition (EET) markers by inhibiting PAR1 activation. Knockout of PAR1 inhibited HCC cell invasion and metastasis and weakened the inhibitory effect of myricetin on HCC cells. The migration, invasion and tube formation ability of PLC-PRF-5 cells were enhanced after PAR1 overexpression, and the inhibitory effect of myricetin was enhanced. A docking assay revealed that myricetin binds to Leu258 and Thr261 in the PAR1 activity pocket. Mutation of Leu258 and Thr261 inhibited the antitumor effect of myricetin in vitro and in vivo. In summary, myricetin reverses PAR1-mediated EET and inhibits HCC cell invasion, metastasis, VM formation and angiogenesis by targeting PAR1, and Leu258 and Thr261 of PAR1 participate in VM and angiogenesis in HCC tissues.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Endotelio/metabolismo , Endotelio/patología , Transición Epitelial-Mesenquimal , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Neoplasias Hepáticas/genética , Neovascularización Patológica/tratamiento farmacológico , Receptor PAR-1
8.
Biol Pharm Bull ; 44(10): 1433-1444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602553

RESUMEN

Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Existing screening and early diagnosis methods are not highly sensitive for HCC, and patients are likely to develop the disease to the middle and advanced stages before being diagnosed. Therefore, finding new and efficient diagnosis and treatment methods has become an urgent problem. We aimed at finding and verifying new liver cancer markers by combining informatics analysis with experimental exploration to provide new ideas and methods for the diagnosis and treatment of clinical liver cancer. We used two different bioinformatic pipelines to analyze sequencing data of clinical liver cancer samples and identify differentially expressed genes and key variants after combining them with The Cancer Genome Atlas sequencing data. Then, we explored the functions and mechanisms of the key variants to identify potential liver cancer markers. Through bioinformatic analysis of sequencing data, 139 differentially expressed genes were found, including 53 upregulated genes and 86 downregulated genes. Through enrichment and alternative splicing event analysis of sequencing data, we found nine key variants with exon skipping events. Metallothionein 1E (MT1E)-203 was found to be a key variant that influenced cell proliferation through the p53 cell cycle pathway through cell viability and proliferation assays, and MT1E-203 lost the ability to bind two zinc ions due to exon skipping according to the structure prediction of MT1E-203. MT1E-203 is a potential biomarker for HCC and may play an important role in the diagnosis and treatment of HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Empalme Alternativo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Biología Computacional , Humanos , Estimación de Kaplan-Meier , Hígado/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Metalotioneína/genética , RNA-Seq
9.
Sensors (Basel) ; 20(4)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079118

RESUMEN

We study the sensor and relay nodes' power scheduling problem for the remote state estimation in a Wireless Sensor Network (WSN) with relay nodes over a finite period of time given limited communication energy. We also explain why the optimal infinite time and energy case does not exist. Previous work applied a predefined threshold for the error covariance gap of two contiguous nodes in the WSN to adjust the trade-off between energy consumption and estimation accuracy. However, instead of adjusting the trade-off, we employ an algorithm to find the optimal sensor and relay nodes' scheduling strategy that achieves the smallest estimation error within the given energy limit under our model assumptions. Our core idea is to unify the sensor-to-relay-node way of error covariance update with the relay-node-to-relay-node way by converting the former way of the update into the latter, which enables us to compare the average error covariances of different scheduling sequences with analytical methods and thus finding the strategy with the minimal estimation error. Examples are utilized to demonstrate the feasibility of converting. Meanwhile, we prove the optimality of our scheduling algorithm. Finally, we use MATLAB to run our algorithm and compute the average estimation error covariance of the optimal strategy. By comparing the average error covariance of our strategy with other strategies, we find that the performance of our strategy is better than the others in the simulation.

10.
Opt Express ; 26(2): A19-A29, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402052

RESUMEN

Silicon nanowire (SiNW) has been widely used for light-trapping in photovoltaics, optical sensors, and other optoelectronic devices. However, we found that 58.4% of the light trapped by a SiNW with a diameter of 60 nm and a length of 1 µm will be wasted: 64.5% of the trapped light will be absorbed within itself, and 90.5% of carriers excited by this part of light will recombine before being transported to the silicon substrate. In this work, it is shown that oxidation of SiNW can transport much more light into the silicon substrate. At first, our simulation results demonstrate that oxidation can dramatically reduce the percentage of absorbed light. In an oxidized SiNW (O-SiNW) with a total and silicon core diameter of 60 nm and 30 nm, respectively, the percentage is about 44.5%. Next, a low carrier recombination ratio, about 27.3%, can be obtained in O-SiNW due to the passivation effect of the oxide layer. As a result, oxidation of SiNW can reduce the proportion of wasted light from 58.4% to 12.1%. More importantly, oxidation almost doesn't sacrifice the light-trapping ability: experimental measurements demonstrate that the average reflectance of an O-SiNW array is only slightly higher than that of a SiNW array, 3.9% vs. 3.0%. Such O-SiNW is promising to be used for low-loss light-trapping in specially designed photovoltaic devices.

11.
Small ; 13(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27893190

RESUMEN

Lithium-ion capacitors (LICs) are promising electrical energy storage systems for mid-to-large-scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery-type anode side. Herein, a high-performance LIC by well-defined ZnMn2 O4 -graphene hybrid nanosheets anode and N-doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg-1 at specific power of 180 W kg-1 , and the specific energy remains 98 Wh kg-1 even when the specific power achieves as high as 21 kW kg-1 .

12.
Opt Express ; 25(8): 9225-9231, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437998

RESUMEN

The silver nanowire (AgNW) has excellent light capture ability, showing great prospects in many fields. Based on discrete dipole approximation simulations, it is found that the captured light can be subdivided into three parts: the near-field light occupies ~27.3%, mainly confined around the nanowire with a distance <20nm; the far-field part occupies ~59.6%, showing a dramatic conical distribution; and ~13.1% is ohmically absorbed. These insights are helpful to estimate the limited performance of AgNW-based device utilizing each subdivision, and locate the functional zone. Besides, we found that the light capture efficiency of AgNW can be easily controlled as it increases linearly with nanowire length.

13.
J Immunoassay Immunochem ; 36(5): 517-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25611486

RESUMEN

A simple, rapid sample extraction method for the determination of FQs was developed. Fishery samples were extracted with 2% of 5-sulfosalicylic acid dihydrate and the extracts were analyzed directly without any further purification or clean-up procedures. The FQs were determined with standards of 2% of 5-sulfosalicylic acid dihydrate in the concentration range of 0.1-25.6 µg L(-1), and the limit of detection (LOD) was 0.1 µg L(-1). The matrix interference originated from fishery samples was eliminated by 2% of 5-sulfosalicylic acid dihydrate and did not interact with horseradish peroxidase (HRP) labeled IgG in western blotting. No significant matrix interference was observed as samples extracted with 2% of 5-sulfosalicylic acid dihydrate. Recoveries of FQs in fishery muscle were between 72.37-94.35% in the concentrations range of 10-50 µg kg(-1).This extraction procedure was much rapider and simpler to conventional ELISA extraction procedure and could be used as a time-saving and cost-effective method for FQs monitoring in fishery samples.


Asunto(s)
Bencenosulfonatos/química , Ensayo de Inmunoadsorción Enzimática/métodos , Explotaciones Pesqueras , Fluoroquinolonas/análisis , Salicilatos/química , Límite de Detección , Músculos/química
14.
Front Immunol ; 15: 1389446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034996

RESUMEN

Microbiota has been closely related to human beings, whose role in tumor development has also been widely investigated. However, previous studies have mainly focused on the gut, oral, and/or skin microbiota. In recent years, the study of intratumoral microbiota has become a hot topic in tumor-concerning studies. Intratumoral microbiota plays an important role in the occurrence, development, and response to treatment of malignant tumors. In fact, increasing evidence has suggested that intratumoral microbiota is associated with malignant tumors in various ways, such as promoting the tumor development and affecting the efficacy of chemotherapy and immunotherapy. In this review, the impact of intratumoral microbiota on the immune microenvironment of malignant tumors has been analyzed, as well as its role in tumor immunotherapy, with the hope that it may contribute to the development of diagnostic tools and treatments for related tumors in the future.


Asunto(s)
Inmunoterapia , Microbiota , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/microbiología , Inmunoterapia/métodos , Microbiota/inmunología , Animales
15.
Int J Biol Macromol ; 275(Pt 1): 133674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971290

RESUMEN

In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.


Asunto(s)
Compuestos Orgánicos , Proteínas de Soja , Proteínas de Soja/química , Compuestos Orgánicos/química , Hidrólisis , Carboximetilcelulosa de Sodio/química , Reología , Reactivos de Enlaces Cruzados/química , Geles/química
16.
ACS Appl Mater Interfaces ; 16(15): 19167-19174, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569197

RESUMEN

Ultraviolet photodetectors (UV PDs) have attracted significant attention due to their wide range of applications, such as underwater communication, biological analysis, and early fire warning systems. Indium oxide (In2O3) is a candidate for developing high-performance photoelectrochemical (PEC)-type UV PDs owing to its high UV absorption and good stability. However, the self-powered photoresponse of the previously reported In2O3-based PEC UV PDs is unsatisfactory. In this work, high-performance self-powered PEC UV PDs were constructed by using an In2O3 nanocube film (NCF) as a photoanode. In2O3 NCF photoanodes were synthesized on FTO by using hydrothermal methods with a calcining process. The influence of the electrolyte concentration, bias potential, and irradiation light on the photoresponse properties was systematically studied. In2O3 NCF PEC UV PDs exhibit outstanding self-powered photoresponses to 365 nm UV light with a high responsivity of 44.43 mA/W and fast response speed (20/30 ms) under zero bias potential, these results are superior to those of previously reported In2O3-based PEC UV PDs. The improved self-powered photoresponse is attributed to the higher photogenerated carrier separation efficiency and faster charge transport of the in-situ grown In2O3 NCF. In addition, these PDs exhibit excellent multicycle stability, maintaining the photocurrent at 98.69% of the initial value after 700 optical switching cycles. Therefore, our results prove the great promise of In2O3 in self-powered PEC UV PDs.

17.
ACS Appl Mater Interfaces ; 15(37): 43994-44000, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672724

RESUMEN

The exploration and development of self-powered visible-blind ultraviolet photodetectors (VBUV PDs) with high responsivity and wavelength selectivity have far-reaching significance for versatile applications. Although In2O3 shows potential for UV detection due to good UV absorption and electrical transport properties, the poor wavelength selectivity impedes further application in VBUV PDs. Here, a self-powered photoelectrochemical-type (PEC) VBUV PD is demonstrated by using gallium-indium oxide alloys (Ga-In OAs). The self-powered Ga-In OAs-based PEC VBUV PDs exhibit good VBUV photodetection performance, including a high responsivity of 50.04 mA/W and a high detectivity of 6.03 × 1010 Jones under 254 nm light irradiation, a good wavelength selectivity (UV/visible light rejection ratio of 262.45), and a fast response time (0.45/0.38 s). The good self-powered VBUV detection performance of Ga-In OAs is attributed to the larger band gap and smaller charge-transfer resistance induced by alloy engineering, which not only suppresses the absorption of visible light but also accelerates interfacial charge transfer. Moreover, an underwater optical communication system is demonstrated by using the self-powered Ga-In OAs PEC VBUV PDs. This study demonstrates that alloy engineering is a powerful tool to improve the performance of In2O3-based PEC PDs, and Ga-In OAs have great application potential for underwater optoelectronic devices.

18.
Food Chem ; 385: 132649, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278735

RESUMEN

This work reports a sensitive and accurate multimode detection method to detect Salmonella typhimurium using inherent color, photothermal and catalytic properties of Prussian blue@gold nanoparticles (PB@Au). The inherent color of PB@Au can realize direct visual detection while the temperature increase (ΔT) of it can realize sensitive and quantitative photothermal detection. Moreover, catalytic coloration detection is applied to further amplify detection signal. The risk limit, prevention and control of Salmonella typhimurium can be more intuitively displayed through catalytic color overlap degree between PB@Au and catalytic product. The sensitivity of method is improved through photothermal and catalytic coloration detection (101 CFU·mL-1) compared with direct visual detection (102 CFU·mL-1). The multimode detection improves the accuracy of method, and exhibits good repeatability, acceptable selectivity and stability. This method is also successfully applied in real samples, displaying its good practical applicability.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Técnicas Biosensibles/métodos , Oro , Límite de Detección , Salmonella typhimurium
19.
Dalton Trans ; 51(11): 4484-4490, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230369

RESUMEN

In this study, a porous structure was initially constructed in the primitives of NiCoP electrode array nanorods based on the principle of the Kirkendall effect, and then phosphate particles generated by an in situ oxidation process were attached to the surface. In the tri-electrode system, the specific capacity was increased to 0.9583 mA h cm-2 with a current density of 2 mA cm-2. When forming the asymmetric supercapacitor cell (ASC) with AC, the specific capacity reached 338 µA h cm-2 and then decreased to 280 µA h cm-2 with the current density increasing from 2 mA cm-2 to 30 mA cm-2, indicating a current retention rate of 82.84%. After 8000 cycles, there was only 13.21% loss in capacity. In addition, power densities as high as 250 W kg-1 and 3763.44 W kg-1 were achieved in this composite when energy densities were equal to 42.25 W h kg-1 and 35 W h kg-1.

20.
ACS Nano ; 16(5): 8440-8448, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35435675

RESUMEN

Two-dimensional (2D) InSe is a good candidate for high-performance photodetectors due to its good light absorption and electrical transport properties. However, 2D InSe photodetectors usually endure a large driving voltage, and 2D InSe-based heterojunction photodetectors require complex fabrication processes. Here, we demonstrate high-performance self-powered InSe-based photoelectrochemical (PEC) photodetectors using electrochemical intercalated ultrathin InSe nanosheets. The ultrathin InSe nanosheets have good crystallinity with a uniform thickness of 1.4-2.1 nm, lateral size up to 18 µm, and yield of 82%. The self-powered InSe-based PEC photodetectors show broadband photoresponse ranging from 365 to 850 nm. The photoresponse of InSe-based PEC photodetectors is boosted by suppressing p-type doping of the intercalator with annealing, which improves the electrical properties and facilitates electron transport from InSe to the electrode. The self-powered annealed InSe (A-InSe) PEC photodetectors show a high responsivity of 10.14 mA/W and fast response speed of 2/37 ms. Moreover, the self-powered PEC photodetectors have good stability under UV-NIR irradiation. Furthermore, the photoresponse can be effectively tuned by the concentration and kind of electrolyte. The facile large-scale fabrication and good photoresponse demonstrate that 2D ultrathin InSe can be applied in high-performance optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA