Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Angew Chem Int Ed Engl ; 60(40): 21751-21755, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34346139

RESUMEN

Singlet oxygen (1 O2 ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of 1 O2 . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe1 /CN) containing highly uniform Fe-N4 active sites with a high Fe loading of 11.2 wt %. The Fe1 /CN achieves generation of 100 % 1 O2 by activating peroxymonosulfate (PMS), which shows an ultrahigh p-chlorophenol degradation efficiency. Density functional theory calculations results demonstrate that in contrast to Co and Ni single-atom sites, the Fe-N4 sites in Fe1 /CN adsorb the terminal O of PMS, which can facilitate the oxidization of PMS to form SO5 .- , and thereafter efficiently generate 1 O2 with 100 % selectivity. In addition, the Fe1 /CN exhibits strong resistance to inorganic ions, natural organic matter, and pH value during the degradation of organic pollutants in the presence of PMS. This work develops a novel catalyst for the 100 % selective production of 1 O2 for highly selective and efficient degradation of pollutants.

2.
Inorg Chem ; 57(12): 7355-7361, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29847108

RESUMEN

Iron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes. RIXS provides advantages over traditional optical spectroscopies, because it is capable of measuring low-energy electronic excitations (0-10 000 cm-1) and spin-flip transitions. RIXS reveals the dense manifold of d-d excited states in dimeric [2Fe-2S] and tetrameric [MFe3S4]2+ (M = V or Mo) complexes resulting from covalency and exchange coupling. These results support recent ab initio theoretical predictions that FeS clusters possess a much greater number of low-lying excited states than predicted by model Hamiltonians.

3.
Phys Chem Chem Phys ; 20(6): 4554-4562, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29376165

RESUMEN

Two isostructural cobalt containing polyoxometalate water oxidation catalysts, [Co4(H2O)2(α-PW9O34)2]10- (Co4P2) and [Co4(H2O)2(α-VW9O34)2]10- (Co4V2), exhibit large differences in their catalytic performance. The substitution of phosphorus centers in Co4P2 with redox-active vanadium centers in Co4V2 leads to electronic structure modifications. Evidence for the significance of the vanadium centers to catalysis, predicted by theory, was found from soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS). The XAS and RIXS spectra determine the electronic structure of the cobalt and vanadium sites in the pre-reaction state of both Co4V2 and Co4P2. High-energy resolution RIXS results reveal that Co4V2 possesses a smaller ligand field within the tetra-cobalt core and a cobalt-to-vanadium charge transfer band. The differences in electronic structures offer insights into the enhanced catalysis of Co4V2.

4.
Phys Chem Chem Phys ; 20(22): 15183-15191, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29789837

RESUMEN

To unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the electronic and crystal structures of the Rh NPs using various synchrotron based X-ray techniques. Electronic structure studies revealed that the hydrogen-storage capability of Rh NPs could be attributed to their more unoccupied d-DOSs than that of the bulk near the Fermi level. Crystal structure studies indicated that lattice distortion and mean-square displacement increase while coordination number decreases with decreasing particle size and the hydrogen-absorption capability of Rh NPs improves to a greater extent with increased structural disorder in the local structure than with that in the mean structure. The smallest Rh NPs, having the largest structural disorder/increased vacancy spaces and the smallest coordination number, exhibited excellent hydrogen-storage capacity. Finally, from the bond-orientational order analysis, we confirmed that the localized disordering is distributed more over the surface part than the core part and hydrogen can be trapped on the surface part of Rh NPs which increases with a decrease in NP diameter.

5.
Langmuir ; 33(16): 3954-3959, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28359152

RESUMEN

Water existing in the vicinity of polyelectrolytes exhibits unique structural properties, which demonstrate key roles in chemistry, biology, and geoscience. In this study, X-ray absorption and emission spectroscopy was employed to observe the local hydrogen-bonding structure of water confined in a charged polyelectrolyte brush. Even at room temperature, a majority of the water molecules confined in the polyelectrolyte brush exhibited one type of hydrogen-bonding configuration: a slightly distorted, albeit ordered, configuration. The findings from this study provide new insight in terms of the correlation between the function and local structure of water at the interface of biological materials under physiological conditions.

6.
Inorg Chem ; 56(14): 8203-8211, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28653856

RESUMEN

Ligand field spectra provide direct information about the electronic structure of transition metal complexes. However, these spectra are difficult to measure by conventional optical techniques due to small cross sections for d-to-d transitions and instrumental limitations below 4000 cm-1. 2p3d resonant inelastic X-ray scattering (RIXS) is a second order process that utilizes dipole allowed 2p to 3d transitions to access d-d excited states. The measurement of ligand field excitation spectra by RIXS is demonstrated for a series of tetrahedral and octahedral Fe(II) and Fe(III) chlorides, which are denoted Fe(III)-Td, Fe(II)-Td, Fe(III)-Oh, and Fe(II)-Oh. The strong 2p spin-orbit coupling allows the measurement of spin forbidden transitions in RIXS spectroscopy. The Fe(III) spectra are dominated by transitions from the sextet ground state to quartet excited states, and the Fe(II) spectra contain transitions to triplet states in addition to the spin allowed 5Γ â†’ 5Γ transition. Each experimental spectrum is simulated using a ligand field multiplet model to extract the ligand field splitting parameter 10Dq and the Racah parameters B and C. The 10Dq values for Fe(III)-Td, Fe(II)-Td, and Fe(III)-Oh are found to be -0.7, -0.32, and 1.47 eV, respectively. In the case of Fe(II)-Oh, a single 10Dq parameter cannot be assigned because Fe(II)-Oh is a coordination polymer exhibiting axially compressed Fe(II)Cl 6 units. The 5T → 5E transition is split by the axial compression resulting in features at 0.51 and 0.88 eV. The present study forms the foundation for future applications of 2p3d RIXS to molecular iron sites in more complex systems, including iron-based catalysts and enzymes.

7.
Angew Chem Int Ed Engl ; 55(52): 16054-16058, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27862789

RESUMEN

Homogeneous catalysts generally possess superior catalytic performance compared to heterogeneous catalysts. However, the issue of catalyst separation and recycling severely limits their use in practical applications. Single-atom catalysts have the advantages of both homogeneous catalysts, such as "isolated sites", and heterogeneous catalysts, such as stability and reusability, and thus would be a promising alternative to traditional homogeneous catalysts. In the hydroformylation of olefins, single-atom Rh catalysts supported on ZnO nanowires demonstrate similar efficiency (TON≈40000) compared to that of homogeneous Wilkinson's catalyst (TON≈19000). HAADF-STEM and infrared CO chemisorption experiments identified isolated Rh atoms on the support. XPS and XANES spectra indicate that the electronic state of Rh is almost metallic. The catalysts are about one or two orders of magnitude more active than most reported heterogeneous catalysts and can be reused four times without an obvious decline in activity.

8.
Phys Chem Chem Phys ; 17(5): 3783-95, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25559330

RESUMEN

Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

9.
Nat Commun ; 13(1): 2648, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551203

RESUMEN

Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge. Here, we report a simple strategy to construct Pd1/TiO2 SACs by selectively encapsulating the co-existed small amount of Pd nanoclusters/nanoparticles based on their different strong metal-support interaction (SMSI) occurrence conditions. In addition, photo-thermo catalysis has been applied to this process where a much-improved catalytic activity was obtained. Detailed characterization combined with DFT calculation suggests that photo-induced electrons transferred from TiO2 to the adjacent Pd atoms facilitate the activation of acetylene. This work offers an opportunity to develop highly stable Pd SACs for efficient catalytic semi-hydrogenation process.

10.
Nat Commun ; 13(1): 5581, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151199

RESUMEN

Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a "nanodispersion-in-nanograins" strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials.

11.
J Phys Chem B ; 125(41): 11534-11539, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34617749

RESUMEN

Highly salt-concentrated aqueous solutions are a new class of electrolytes, which provide a wide potential window exceeding 3 V and, hence, realize possibly inexpensive, safe, and high-energy-density storage devices. Herein, we investigate the evolution of the coordination structure and electronic state depending on the salt concentration through soft X-ray emission spectroscopy and first-principles molecular dynamics calculations. Close to the concentration limit, categorized as a "hydrate melt," a long-range hydrogen-bond network of water molecules disappears with emerging localized electronic states that resemble those in the gas phase. Such localized electronic states are attributed not only to their geometrically isolated nature but also to their dominant electrostatic interaction with Li+ cations. Therefore, the electrical properties of water in the hydrate melt can be more gaslike than liquidlike.

12.
Sci Rep ; 10(1): 8772, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472032

RESUMEN

Novel compact x-ray sources based on inverse Compton scattering can generate brilliant hard x-rays in a laboratory setting. Their collimated intense beams with tunable well-defined x-ray energies make them well suited for x-ray spectroscopy techniques, which are typically carried out at large facilities. Here, we demonstrate a first x-ray absorption spectroscopy proof-of-principle experiment using an inverse Compton x-ray source with a flux of >1010 photons/s in <5% bandwidth. We measured x-ray absorption near edge structure and extended x-ray absorption fine structure at the silver K-edge (~25.5 keV) for a series of silver samples. We propose an energy-dispersive geometry specifically adapted to the x-ray beam properties of inverse Compton x-ray sources together with a fast concentration correction method that corrects sample inhomogeneities very effectively. The combination of our setup with the inverse Compton source generates x-ray absorption spectra with high energy resolution in exposure times down to one minute. Our results unravel the great benefit of inverse Compton scattering sources for x-ray absorption techniques in a laboratory environment, especially in the hard x-ray regime, which allows to probe absorption edges of high Z materials.

13.
RSC Adv ; 10(34): 19751-19758, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35520440

RESUMEN

To unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the dynamical structural change of Rh NPs using in situ dispersive X-ray absorption fine structure spectroscopy (XAFS). The variation of the Rh-Rh interatomic distance and Debye-Waller factor of Rh NPs with a size of 4.0 and 10.5 nm during hydrogen absorption and desorption suggested that they have a different mechanism for hydrogen absorption, which is that the hydrogen absorption on the inner site has a greater contribution than that on a surface for Rh 4.0 nm. In the case of Rh 10.5 nm, it is opposed to Rh 4.0 nm. This study demonstrates a powerful in situ XAFS method for observing small local structural changes of metal nanoparticles and its importance for understanding of the hydrogen-absorption properties of Rh NPs with an interesting hydrogenation mechanism.

14.
ACS Appl Mater Interfaces ; 11(42): 38595-38605, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31523947

RESUMEN

Herein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported Ni3MnO4 catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, ß-Ni(OH)2, ß-NiOOH, and γ-NiOOH. Through this comparative analysis, we are able to show that under alkaline conditions (0.1 M KOH), the oxides of the Ni3MnO4 catalyst are converted to hydroxides. At the onset of catalysis (1.47 V), the ß-Ni(OH)2-like phase is oxidized and converted to a dominantly γ-NiOOH phase. The present study thus challenges the notion that the ß-NiOOH phase is the active phase in OER and provides further evidence that the γ-NiOOH phase is catalytically active. The ability to use Ni L-edge XAS and 2p3d RIXS to provide a rational basis for structure-activity correlations is highlighted.

15.
Nat Commun ; 10(1): 5181, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729358

RESUMEN

Dry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.

16.
Nat Commun ; 10(1): 234, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651560

RESUMEN

Surface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO2 units vaporized from nanoparticles during high-temperature calcination. Experimental and computational modeling studies reveal that iron oxide reducibility is crucial to anchor isolated Pt atoms. The resulting high concentrations of single atoms enable specific activities far exceeding those of conventional nanoparticle catalysts. This non defect-stabilization strategy can be extended to non-reducible supports by simply doping with iron oxide, thus paving a new way for constructing high-loading SACs for diverse industrially important catalytic reactions.

17.
Sci Rep ; 7(1): 1482, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28469163

RESUMEN

In situ high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) was used to systematically evaluate interactions of H2O and O2 adsorbed on Pt and Pt3Co nanoparticle catalysts in different particle sizes. The systematic increase in oxidation due to adsorption of different species (H2O adsorption

18.
J Phys Chem C Nanomater Interfaces ; 121(32): 17450-17456, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28845208

RESUMEN

In-situ carbon-thermal reduction of cobalt oxide nanoparticles supported on carbon nanotubes was studied by cobalt 2p3d resonant inelastic X-ray scattering (RIXS). The in-situ 2p X-ray absorption spectroscopy (XAS) and RIXS measurements were performed at 500, 600, and 700 °C, where four consistent excitation energies were used for RIXS acquisitions. After 700 °C reduction, the XAS spectrum shows a cobalt metal-like shape, while the RIXS spectra reveal the minority cobalt monoxide phase. The holistic fit on both XAS and RIXS data reveals the respective contributions from metal and monoxide. We show that the relative precision to determine the monoxide content changes from ∼5.6% in XAS results to better than 0.8% in the RIXS analysis, suggesting that RIXS is a useful tool to track the oxidation state of nanoparticles under in situ conditions. We determined a relative radiative ratio (P) factor of approximately 5, where this factor gives the ratio between the relative strengths of the radiative decay channels compared to the nonradiative channels in CoO and Co metal.

19.
ChemSusChem ; 5(12): 2307-11, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23169703

RESUMEN

Rice to power: Amylopectin is a major component of agricultural products such as corn, potato, and rice. Silicon-graphite electrodes are prepared by using slurries of these polysaccharides as binders. Compared to the conventionally used binder PVdF, they exhibit drastically improved electrode performance in Li cells. The improved performance is coupled to the degree of branching.


Asunto(s)
Productos Agrícolas/química , Suministros de Energía Eléctrica , Grafito/química , Litio/química , Polisacáridos/química , Silicio/química , Amilopectina/química , Amilopectina/aislamiento & purificación , Amilosa/química , Amilosa/aislamiento & purificación , Electrodos , Glucógeno/química , Glucógeno/aislamiento & purificación , Polisacáridos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA