Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Planta ; 240(3): 479-87, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24915748

RESUMEN

The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943-954, 2013). In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous DL-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for DL-glycerol-3-phosphate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Especificidad por Sustrato
2.
Planta ; 237(4): 943-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23179445

RESUMEN

This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-D-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Hidrolasas/aislamiento & purificación , Hidrolasas/metabolismo , Cinética , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
Mol Genet Genomics ; 285(4): 341-54, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21409566

RESUMEN

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Fosfatasas de Especificidad Dual/genética , Ligamiento Genético , Filogenia , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Biocatálisis , Fosfatasas de Especificidad Dual/química , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Datos de Secuencia Molecular , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
4.
Physiol Plant ; 135(4): 365-78, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19340986

RESUMEN

CoA is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. CoA is synthesized in five steps from pantothenate, and recently, the CoA biosynthetic genes of Arabidopsis have all been identified and characterized. Here, we demonstrate the biochemical and physiological characterization of a pyrophosphatase from Arabidopsis thaliana, called AtCoAse (locus tag At5g45940), cleaving CoA to 4'-phosphopantetheine and 3',5'-adenosine-diphosphate in the presence of Mg2+/Mn2+ ions. The CoA cleaving enzyme isa member of the Nudix hydrolases, pyrophosphatases that hydrolyze nucleoside diphosphates, already described as CoAse and now further characterized in detail by us. Mutagenesis of residues of the so-called Nudix and NuCoA motifs drastically reduced the hydrolase activity. AtCoAse is not absolute specific for CoA, and in the presence of Mn2+ ions, a minor hydrolyzing activity was observed with NADH as substrate. The AtCoAse expression is ubiquitous, strongly in flower and unaffected by abiotic stress. The immunohistochemical localization indicates that the AtCoAse protein is observed in the cytoplasm of distinct cells types from different heterotrophic Arabidopsis tissues, mainly restricted to the vascular elements of the root and shoot and in flower and developing embryo. Transgenic Arabidopsis plants, with increased AtCoAse expression, show altered growth rates and development, expanding their live cycle far away from the wild-type.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Coenzima A/metabolismo , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , ARN de Planta/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Hidrolasas Nudix
5.
Biology (Basel) ; 8(4)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31601035

RESUMEN

The Arabidopsis thaliana broad-range sugar phosphate phosphatase AtSgpp (NP_565895.1, locus AT2G38740) and the specific DL-glycerol-3-phosphatase AtGpp (NP_568858.1, locus AT5G57440) are members of the wide family of magnesium-dependent acid phosphatases subfamily I with the C1-type cap domain haloacid dehalogenase-like hydrolase proteins (HAD). Although both AtSgpp and AtGpp have a superimporsable α/ß Rossmann core active site, they differ with respect to the loop-5 of the cap domain, accounting for the differences in substrate specificity. Recent functional studies have demonstrated the essential but not sufficient role of the signature sequence within the motif-5 in substrate discrimination. To better understand the mechanism underlying the control of specificity, we explored additional sequence determinants underpinning the divergent evolutionary selection exerted on the substrate affinity of both enzymes. The most evident difference was found in the loop preceding the loop-5 of the cap domain, which is extended in three additional residues in AtSgpp. To determine if the shortening of this loop would constrain the substrate ambiguity of AtSgpp, we deleted these three aminoacids. The kinetic analyses of the resulting mutant protein AtSgpp3Δ (ΔF53, ΔN54, ΔN55) indicate that promiscuity is compromised. AtSgpp3Δ displays highest level of discrimination for D-ribose-5-phosphate compared to the rest of phosphate ester metabolites tested, which may suggest a proper orientation of D-ribose-5-phosphate in the AtSgpp3Δ active site.

6.
Plant Sci ; 253: 1-12, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27968978

RESUMEN

In order to identify potential substrates of the maize kinase in the ABA signalling network, ZmOST1 was used as bait against a library of cDNAs from dehydrated young leaves. A ZmOST1-interactive polypeptide ZmKS (gene locus tag: GRMZM2G114873), showing homology with the Arabidopsis thaliana basic helix-loop-helix (bHLH) DNA-binding transcription factor was identified. Using a comparative genomic approach, the ZmKS corresponding protein was identified as conceptual translated bHLH transcription factor ABA-responsive kinase substrate. ZmKS is localized in the nucleus, shows a potential binding specificity preferentially detectable on cis-acting E-box like heptameric motifs CCACTTG and CAAGTTG, and is phosphorylated by maize protein kinase ZmOST1. ZmKS is expressed in embryo, leaf and root, expression being affected by ABA and osmotic stress. Transgenic Arabidopsis plants, with gain of ZmKS function, show a delay in germination and a transcriptional stomatal opening-facilitator activity, switchover upon ZmKS phosphorylation, suggesting that ZmKS is an ABA-repressed trans-acting activator.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Expresión Génica , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Zea mays/química , Zea mays/genética
7.
Physiol Plant ; 120(1): 84-92, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15032880

RESUMEN

The lack of knowledge about the tissue and subcellular distribution of polyamines (PAs) and the enzymes involved in their metabolism remains one of the main obstacles in our understanding of the biological role of PAs in plants. Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We have characterized a cDNA coding for ADC from Nicotiana tabacum L. cv. Petit Havana SR1. The deduced ADC polypeptide had 721 amino acids and a molecular mass of 77 kDa. The ADC cDNA was overexpressed in Escherichia coli, and the ADC fusion protein obtained was used to produce polyclonal antibodies. Using immunological methods, we demonstrate the presence of the ADC protein in all plant organs analysed: flowers, seeds, stems, leaves and roots. Moreover, depending on the tissue, the protein is localized in two different subcellular compartments, the nucleus and the chloroplast. In photosynthetic tissues, ADC is located mainly in chloroplasts, whereas in non-photosynthetic tissues the protein appears to be located in nuclei. The different compartmentation of ADC may be related to distinct functions of the protein in different cell types.

8.
Plant Mol Biol ; 63(4): 505-17, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17136424

RESUMEN

We have isolated two Arabidopsis thaliana genes, AtGppl and AtGpp2, showing homology with the yeast low molecular weight phosphatases GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate, and moreover homology with DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate. Using a comparative genomic approach, the corresponding genes were identified as conceptual translated haloacid dehalogenase-like hydrolase proteins. AtGppl (gi 18416631) and AtGpp2 (gi 18423981), encode proteins that share 95% identity, with a predicted Mw of 33 and 27 kDa and a pI of 7.8 and 5.6, respectively. Both isoforms have a high specificity for DL-glycerol-3-phosphate, pH optima at 7.0, and Km in the range of 3.5-5.2 mM. AtGppl and AtGpp2 are expressed throughout development in all plant organs, most strongly in siliqua, and expression is not affected by osmotic, ionic or oxidative stress. A putative chloroplast transit peptide cTP-containing sequence is appended to the AtGppl N-terminus while AtGpp2, devoid of this tail, is predicted to be in the extraplastidial cytosol; this compartmenting was further confirmed by subcellular fractionation. An immunohystochemical localization study, using anti-AtGpp2 antibodies, indicates that the AtGpp proteins are mainly restricted to the meristem of immature flower and vascular elements of the root, shoot, leave, siliqua and developing embryo. Considerable immunoreaction was observed in the cytoplasm as well as in plastid compartments of distinct cells types from different heterotrophic Arabidopsis tissues, and particularly localised within phloem companion cells. Transgenic Arabidopsis plants, with gain of AtGpp2 function, show altered phosphatase activity rates and improved tolerance to salt, osmotic and oxidative stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glicerol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Cartilla de ADN , Cinética , Datos de Secuencia Molecular , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Alineación de Secuencia , Especificidad por Sustrato
9.
J Biol Chem ; 278(40): 38229-37, 2003 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-12860978

RESUMEN

Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4'-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiáñez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190-19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4'-phosphopantothenoylcysteine synthetase (AtCoaB), 4'-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4'-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+.


Asunto(s)
Arabidopsis/química , Arabidopsis/genética , Coenzima A/biosíntesis , Nucleotidiltransferasas/química , Panteteína/análogos & derivados , Panteteína/química , Plantas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Fenómenos Bioquímicos , Bioquímica , Línea Celular , Clonación Molecular , Cisteína/química , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Genoma de Planta , Magnesio/química , Modelos Químicos , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/aislamiento & purificación , Ósmosis , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido , Factores de Tiempo
10.
J Biol Chem ; 277(23): 20490-8, 2002 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-11923307

RESUMEN

The Arabidopsis thaliana flavoprotein AtHAL3a, which is linked to plant growth and salt and osmotic tolerance, catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. AtHAL3a is similar in sequence and structure to the LanD enzymes EpiD and MrsD, which catalyze the oxidative decarboxylation of peptidylcysteines. Therefore, we hypothesized that the decarboxylation of 4'-phosphopantothenoylcysteine also occurs via an oxidatively decarboxylated intermediate containing an aminoenethiol group. A set of AtHAL3a mutants were analyzed to detect such an intermediate. By exchanging Lys(34), we found that AtHAL3a is not only able to decarboxylate 4'-phosphopantothenoylcysteine but also pantothenoylcysteine to pantothenoylcysteamine. Exchanging residues within the substrate binding clamp of AtHAL3a (for example of Gly(179)) enabled the detection of the proposed aminoenethiol intermediate when pantothenoylcysteine was used as substrate. This intermediate was characterized by its high absorbance at 260 and 280 nm, and the removal of two hydrogen atoms and one molecule of CO(2) was confirmed by ultrahigh resolution mass spectrometry. Using the mutant AtHAL3a C175S enzyme, the product pantothenoylcysteamine was not detectable; however, oxidatively decarboxylated pantothenoylcysteine could be identified. This result indicates that reduction of the aminoenethiol intermediate depends on a redox-active cysteine residue in AtHAL3a.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Carboxiliasas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimología , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Especificidad por Sustrato
11.
Plant Mol Biol ; 50(2): 249-59, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12175017

RESUMEN

The Arabidopsis gene Atrab28 has been shown to be expressed during late embryogenesis. The pattern of expression of Atrab28 mRNA and protein during embryo development is largely restricted to provascular tissues of mature embryos, and in contrast to the maize Rab28 homologue it cannot be induced by ABA and dehydration in vegetative tissues. Here, we have studied the subcellular location of Atrab28 protein and the effect of its over-expression in transgenic Arabidopsis plants. The Atrab28 protein was mainly detected in the nucleus and nucleolus of cells from mature embryos. In frame fusion of Atrab28 to the reporter green fluorescent protein (GFP) directed the GFP to the nucleus in transgenic Arabidopsis and in transiently transformed onion cells. Analysis of chimeric constructs identified an N-terminal region of 60 amino acids containing a five amino acid motif QPKRP that was necessary for targeting GFP to the nucleus. These results indicate that Atrab28 protein is targeted to the nuclear compartments by a new nuclear localization signal (NLS). Transgenic Arabidopsis plants, with gain of Atrab28 function, showed faster germination rates under either standard or salt and osmotic stress conditions. Moreover, improved cation toxicity tolerance was also observed not only during germination but also in seedlings. These results suggest a role of Atrab28 in the ion cell balance during late embryogenesis and germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/fisiología , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Sitios de Unión/genética , Transporte Biológico , Cationes/toxicidad , Núcleo Celular/metabolismo , Expresión Génica , Germinación/genética , Germinación/fisiología , Proteínas Fluorescentes Verdes , Immunoblotting , Cloruro de Litio/toxicidad , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Señales de Localización Nuclear/genética , Cebollas/citología , Cebollas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA