Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Pract Cases Emerg Med ; 5(4): 515-518, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34813461

RESUMEN

INTRODUCTION: Cranial nerve (CN) VI palsy is a common complaint seen in the emergency department (ED) and has a wide range of causes. Bilateral CN VI palsies are uncommon and appear to be associated with more severe complications. CASE REPORT: A 29-year-old male presented to the ED from an ophthalmology office for diplopia, headache, and strabismus. He was found to have bilateral CN VI palsies and new-onset seizure in the ED. A lumbar puncture revealed cryptococcal meningitis. Additional tests revealed a new diagnosis of human immunodeficiency virus (HIV), acquired immunodeficiency syndrome (AIDS), and syphilis. CONCLUSION: Cryptococcal meningitis remains a life-threatening complication of HIV/AIDS. Coinfections with HIV, particularly syphilis, further complicate a patient's prognosis as both can lead to devastating neurological sequelae. In cryptococcal meningitis, elevated intracranial pressure is a complication that can manifest as seizures, altered mental status, and cranial nerve palsies.

2.
Circ Res ; 103(8): 825-35, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18787193

RESUMEN

Recently, the side population (SP) phenotype has been introduced as a reliable marker to identify subpopulations of cells with stem/progenitor cell properties in various tissues. We and others have identified SP cells from postmitotic tissues, including adult myocardium, in which they have been suggested to contribute to cellular regeneration following injury. SP cells are identified and characterized by a unique efflux of Hoechst 33342 dye. Abcg2 belongs to the ATP-binding cassette (ABC) transporter superfamily and constitutes the molecular basis for the dye efflux, hence the SP phenotype, in hematopoietic stem cells. Although Abcg2 is also expressed in cardiac SP (cSP) cells, its role in regulating the SP phenotype and function of cSP cells is unknown. Herein, we demonstrate that regulation of the SP phenotype in cSP cells occurs in a dynamic, age-dependent fashion, with Abcg2 as the molecular determinant of the cSP phenotype in the neonatal heart and another ABC transporter, Mdr1, as the main contributor to the SP phenotype in the adult heart. Using loss- and gain-of-function experiments, we find that Abcg2 tightly regulates cell fate and function. Adult cSP cells isolated from mice with genetic ablation of Abcg2 exhibit blunted proliferation capacity and augmented cell death. Conversely, overexpression of Abcg2 is sufficient to enhance cell proliferation, although with a limitation of cardiomyogenic differentiation. In summary, for the first time, we reveal a functional role for Abcg2 in modulating the proliferation, differentiation, and survival of adult cSP cells that goes beyond its distinct role in Hoechst dye efflux.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Miocardio/metabolismo , Células Madre/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Factores de Edad , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Bencimidazoles/metabolismo , Muerte Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Colorantes Fluorescentes/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocardio/citología , Fenotipo , Transducción Genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
3.
Circulation ; 117(11): 1423-35, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18316486

RESUMEN

BACKGROUND: Heart failure is the leading cause of death in the United States. By delineating the pathways that regulate cardiomyocyte function, we can better understand the pathogenesis of cardiac disease. Many cardiomyocyte signaling pathways activate protein tyrosine kinases. However, the role of specific protein tyrosine phosphatases (PTPs) in these pathways is unknown. METHODS AND RESULTS: Here, we show that mice with muscle-specific deletion of Ptpn11, the gene encoding the SH2 domain-containing PTP Shp2, rapidly develop a compensated dilated cardiomyopathy without an intervening hypertrophic phase, with signs of cardiac dysfunction appearing by the second postnatal month. Shp2-deficient primary cardiomyocytes are defective in extracellular signal-regulated kinase/mitogen-activated protein kinase (Erk/MAPK) activation in response to a variety of soluble agonists and pressure overload but show hyperactivation of the RhoA signaling pathway. Treatment of primary cardiomyocytes with Erk1/2- and RhoA pathway-specific inhibitors suggests that both abnormal Erk/MAPK and RhoA activities contribute to the dilated phenotype of Shp2-deficient hearts. CONCLUSIONS: Our results identify Shp2 as the first PTP with a critical role in adult cardiac function, indicate that in the absence of Shp2 cardiac hypertrophy does not occur in response to pressure overload, and demonstrate that the cardioprotective role of Shp2 is mediated via control of both the Erk/MAPK and RhoA signaling pathways.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Miocitos Cardíacos/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Síndrome LEOPARD/enzimología , Síndrome LEOPARD/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Modelos Animales , Síndrome de Noonan/enzimología , Síndrome de Noonan/genética , Especificidad de Órganos , Fenotipo , Presión , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA
4.
PLoS One ; 7(7): e40048, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802950

RESUMEN

Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C ß activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCß activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.


Asunto(s)
Cardiomegalia/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Miocitos Cardíacos/fisiología , Proteínas RGS/fisiología , Transducción de Señal/fisiología , Animales , Aorta Torácica/cirugía , Enfermedades de la Aorta/fisiopatología , Constricción Patológica/fisiopatología , Ratones , Ratones Transgénicos , Fosfolipasa C beta/metabolismo
5.
OMICS ; 13(6): 501-11, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20001863

RESUMEN

We have previously found that CHF1/Hey2 prevents the development of phenylephrine-induced cardiac hypertrophy. To determine the role of CHF1/Hey2 in pressure overload hypertrophy, we performed ascending aortic banding on wild-type and transgenic mice overexpressing CHF1/Hey2 in the myocardium. We found that both wild-type and transgenic mice developed increased ventricular weight to body weight ratios 1 week after aortic banding. Wild-type mice also developed decreased fractional shortening after 1 week when compared to preoperative echocardiograms and sham-operated controls. Transgenic mice, in comparison, demonstrated preserved fractional shortening. Histological examination of explanted heart tissue demonstrated extensive fibrosis in wild-type hearts, but minimal fibrosis in transgenic hearts. TUNEL staining demonstrated increased apoptosis in the wild-type hearts but not in the transgenic hearts. Exposure of cultured neonatal myocytes from wild-type and transgenic animals to hydrogen peroxide, a potent inducer of apoptosis, demonstrated increased apoptosis in the wild-type cells. Gene Set Analysis of microarray data from wild-type and transgenic hearts 1 week after banding revealed suppression and activation of multiple pathways involving apoptosis, cell signaling, and biosynthesis. These findings demonstrate that CHF1/Hey2 promotes physiological over pathological hypertrophy through suppression of apoptosis and regulation of multiple transcriptional pathways. These findings also suggest that CHF1/Hey2 and its downstream pathways provide a variety of targets for novel heart failure drug discovery, and that genetic polymorphisms in CHF1/Hey2 may affect susceptibility to hypertrophy and heart failure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cardiomegalia/metabolismo , Regulación de la Expresión Génica , Miocardio , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Transcripción Genética , Animales , Apoptosis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Presión Sanguínea/fisiología , Cardiomegalia/patología , Células Cultivadas , Fibrosis/patología , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Represoras/genética
6.
Blood ; 111(6): 3236-44, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096761

RESUMEN

Pharmacologic activation of the heterodimeric HIF transcription factor appears promising as a strategy to treat diseases, such as anemia, myocardial infarction, and stroke, in which tissue hypoxia is a prominent feature. HIF accumulation is normally linked to oxygen availability because an oxygen-dependent posttranslational modification (prolyl hydroxylation) marks the HIFalpha subunit for polyubiquitination and destruction. Three enzymes (PHD1, PHD2, and PHD3) capable of catalyzing this reaction have been identified, although PHD2 (also called Egln1) appears to be the primary HIF prolyl hydroxylase in cell culture experiments. We found that conditional inactivation of PHD2 in mice is sufficient to activate a subset of HIF target genes, including erythropoietin, leading to striking increases in red blood cell production. Mice lacking PHD2 exhibit premature mortality associated with marked venous congestion and dilated cardiomyopathy. The latter is likely the result of hyperviscosity syndrome and volume overload, although a direct effect of chronic, high-level HIF stimulation on cardiac myocytes cannot be excluded.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Policitemia/enzimología , Policitemia/genética , Alelos , Animales , Células Cultivadas , Ecocardiografía , Activación Enzimática , Eritropoyesis/genética , Regulación Enzimológica de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico por imagen , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Policitemia/patología , Procolágeno-Prolina Dioxigenasa , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA