Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 24(8): 3580-3588, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37486022

RESUMEN

Biomolecular assembly processes involving competition between specific intermolecular interactions and thermodynamic phase instability have been implicated in a number of pathological states and technological applications of biomaterials. As a model for such processes, aqueous mixtures of oppositely charged homochiral polypeptides such as poly-l-lysine and poly-l-glutamic acid have been reported to form either ß-sheet-rich solid-like precipitates or liquid-like coacervate droplets depending on competing hydrogen bonding interactions. Herein, we report studies of polypeptide mixtures that reveal unexpectedly diverse morphologies ranging from partially coalescing and aggregated droplets to bulk precipitates, as well as a previously unreported re-entrant liquid-liquid phase separation at high polypeptide concentration and ionic strength. Combining our experimental results with all-atom molecular dynamics simulations of folded polypeptide complexes reveals a concentration dependence of ß-sheet-rich secondary structure, whose relative composition correlates with the observed macroscale morphologies of the mixtures. These results elucidate a crucial balance of interactions that are important for controlling morphology during coacervation in these and potentially similar biologically relevant systems.


Asunto(s)
Péptidos , Conformación Proteica en Lámina beta , Péptidos/química , Estructura Secundaria de Proteína , Enlace de Hidrógeno , Concentración Osmolar
2.
Nano Lett ; 16(10): 6709-6715, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27673480

RESUMEN

Despite the need for molecularly smooth self-assembled monolayers (SAMs) on silicon dioxide surfaces (the most common dielectric surface), current techniques are limited to nonideal silane grafting. Here, we show unique bioinspired zwitterionic molecules forming a molecularly smooth and uniformly thin SAM in "water" in <1 min on various dielectric surfaces, which enables a dip-coating process that is essential for organic electronics to become reality. This monomolecular layer leads to high mobility of organic field-effect transistors (OFETs) based on various organic semiconductors and source/drain electrodes. A combination of experimental and computational techniques confirms strong adsorption (Wad > 20 mJ m-2), uniform thickness (∼0.5 or ∼1 nm) and orientation (all catechol head groups facing the oxide surface) of the "monomolecular" layers. This robust (strong adsorption), rapid, and green SAM represents a promising advancement toward the next generation of nanofabrication compared to the current nonuniform and inconsistent polysiloxane-based SAM involving toxic chemicals, long processing time (>10 h), or heat (>80 °C).

3.
Biopolymers ; 103(6): 351-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25677872

RESUMEN

Molecular dynamics and de novo techniques, associated to quality parameter sets, have excelled at determining the structure of small proteins with high accuracy. To achieve a detailed description of protein conformations, these methods must critically assess the thermodynamic features of the molecular ensembles. Here, a comparison of the conformational ensemble generated by molecular dynamics and de novo techniques were carried out for six Top7-based proteins carrying gp41 HIV-1 epitopes. The native Top7, a highly stable computationally designed protein, was used as benchmark. Structural stability, flexibility, and secondary structure content were assessed. The consistency of the latter was compared to experimental circular dichroism spectra for all proteins. While both methods are capable to identify the stable from unstable chimeric proteins, the sampled conformational space and flexibility differ significantly in both methods. Molecular dynamics simulations seem to better describe secondary structure content and identify regions responsible for conformational instability. The de novo method, as implemented in Rosetta-a prime tool for protein design, overestimates secondary structure content. On the other hand, its empirical energy function is capable to predict the threshold for protein stability.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica
4.
J Phys Chem B ; 125(35): 9999-10008, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459591

RESUMEN

Improving adhesives for wet surfaces is an ongoing challenge. While the adhesive proteins of marine mussels have inspired many synthetic wet adhesives, the mechanisms of mussel adhesion are still not fully understood. Using surface forces apparatus (SFA) measurements and replica-exchange and umbrella-sampling molecular dynamics simulations, we probed the relationships between the sequence, structure, and adhesion of mussel-inspired peptides. Experimental and computational results reveal that peptides derived from mussel foot protein 3 slow (mfp-3s) containing 3,4-dihydroxyphenylalanine (Dopa), a post-translationally modified variant of tyrosine commonly found in mussel foot proteins, form adhesive monolayers on mica. In contrast, peptides with tyrosine adsorb as weakly adhesive clusters. We further considered simulations of mfp-3s derivatives on a range of hydrophobic and hydrophilic organic and inorganic surfaces (including silica, self-assembled monolayers, and a lipid bilayer) and demonstrated that the chemical character of the target surface and proximity of cationic and hydrophobic residues to Dopa affect peptide adsorption and adhesion. Collectively, our results suggest that conversion of tyrosine to Dopa in hydrophobic, sparsely charged peptides influences peptide self-association and ultimately dictates their adhesive performance.


Asunto(s)
Bivalvos , Dihidroxifenilalanina , Animales , Péptidos , Proteínas , Propiedades de Superficie
5.
Adv Mater ; 29(39)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833661

RESUMEN

Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA